Skip to main content
Log in

Limited Feedback Assisted Dynamic Decode-and-Forward Relaying for Multiple Access Relay Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Feedback about the channel state information (CSI) enables the transmitter nodes to exploit channel conditions to yield large improvements in almost any performance metric. However, in practice, channel adaptive techniques based on full CSI have been deemed impractical due to the finite capacity of the feedback links. This work considers a multiple-access relay channel (MARC) where two source nodes communicate with one destination node assisted by one half-duplex dynamic decode-and forward (DDF) relay. Using the diversity-multiplexing tradeoff as a figure-of-merit, we propose a practical limited-feedback (LF) mechanism for MARC and show that a small number of information bits about the channel conditions leads to near optimal performance. With no CSI, this system incurs diversity-gain loss at higher multiplexing gains. However, by using an LF scheme where the destination sends an ACK or NACK to the relay, we show that the optimal diversity gain can be achieved across all the multiplexing gains for the considered DDF based MARC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abouelseoud, M., & Nosratinia, A. (2011). Opportunistic wireless relay networks: Diversity-multiplexing tradeoff. IEEE Transactions on Information Theory, 57(10), 6514–6538.

    Article  MathSciNet  MATH  Google Scholar 

  2. Azarian, K., Gamal, H. E., & Schniter, P. (2005). On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 51(12), 4152–4172. https://doi.org/10.1109/TIT.2005.858920.

    Article  MathSciNet  MATH  Google Scholar 

  3. Azarian, K., Gamal, H. E., & Schniter, P. (2008). On the optimality of the ARQ-DDF protocol. IEEE Transactions on Information Theory, 54(4), 1718–1724. https://doi.org/10.1109/TIT.2008.917722.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, D., Azarian, K., & Laneman, J. N. (2008). A case for amplify-forward relaying in the block-fading multiple-access channel. IEEE Transactions on Information Theory, 54(8), 3728–3733. https://doi.org/10.1109/TIT.2008.926336.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kolte, R., Özgür, A., & Diggavi, S. (2015). When are dynamic relaying strategies necessary in half-duplex wireless networks? IEEE Transactions on Information Theory, 61(4), 1720–1738. https://doi.org/10.1109/TIT.2015.2402163.

    Article  MathSciNet  MATH  Google Scholar 

  6. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080. https://doi.org/10.1109/TIT.2004.838089.

    Article  MathSciNet  MATH  Google Scholar 

  7. Love, D. J., Heath, R. W., Lau, V. K., Gesbert, D., Rao, B. D., & Andrews, M. (2008). An overview of limited feedback in wireless communication systems. IEEE Journal on Selected Areas in Communications, 26(8), 1341.

    Article  Google Scholar 

  8. Mohamad, A., Visoz, R., & Berthet, A. O. (2016) Outage analysis of dynamic selective decode-and-forward in slow fading wireless relay networks. In 2016 8th international congress on ultra modern telecommunications and control systems and workshops (ICUMT), IEEE (pp. 420–426).

  9. Rao, Y. S., Sirigina, R. P., & Madhukumar, A. (2017). On the DMT of RF energy harvesting-based dynamic decode-and-forward relaying. IEEE Communications Letters, 21(1), 200–203.

    Article  Google Scholar 

  10. Sirigina, R. P., & Madhukumar, A. (2015). DMT for the relay assisted interference cancellation over Nakagami-m fading channel. In 2015 IEEE 81st vehicular technology conference (VTC Spring), IEEE (pp. 1–5).

  11. Sirigina, R. P., & Madhukumar, A. (2015). On the diversity gain region for the relay assisted interference management. In 2015 IEEE 81st vehicular technology conference (VTC Spring), IEEE (pp. 1–5).

  12. Sirigina, R. P., & Madhukumar, A. S. (2018). On the diversity gain region of the dynamic decode-and-forward relay-assisted Z-channel. Wireless Networks, 24(2), 395–407.

    Article  Google Scholar 

  13. Sirigina, R. P., Madhukumar, A., & Li, Q. (2012) Performance analysis of z-channel with relay under Rayleigh fading and discrete constellations. In 2012 IEEE wireless communications and networking conference (WCNC), IEEE (pp. 92–96).

  14. Sirigina, R. P., Madhukumar, A., & Vinod, A. P. (2017). Diversity gain region of Nakagami-m faded z-channel. Circuits, Systems, and Signal Processing, 36(5), 2184–2197.

    Article  MATH  Google Scholar 

  15. Tannious, R., & Nosratinia, A. (2008). Spectrally-efficient relay selection with limited feedback. IEEE Journal on Selected Areas in Communications, 26(8), 1419–1428.

    Article  Google Scholar 

  16. Tse, D. N. C., Viswanath, P., & Zheng, L. (2004). Diversity-multiplexing tradeoff in multiple-access channels. IEEE Transactions on Information Theory, 50(9), 1859–1874.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, Y. (2016). Achievable rate regions for cooperative relay broadcast channels with rate-limited feedback. In 2016 IEEE international symposium on information theory (ISIT), IEEE (pp. 1660–1664).

  18. Yuksel, M., & Erkip, E. (2007). Multiple-antenna cooperative wireless systems: A diversity multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 53(10), 3371–3393. https://doi.org/10.1109/TIT.2007.904972.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakara Rao Yepuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 1

The constraint region corresponding to linear programming problem defined in (26) can be characterized into three parts based on the value of f. These possibilities are graphically depicted in Fig. 4a, b and c.

  1. 1.

    \(0 \le f \le \frac{1}{2}\) : Using Fig. 4a, we can conclude that the optimal values \(v_1^*=v_r^*=1-\frac{r}{2}\), i.e.,

    $$\begin{aligned} \inf (v_1 + v_2 + v_r) = 2 \left( 1-\frac{r}{2} \right) = 2-r \end{aligned}$$
    (46)
  2. 2.

    \(\frac{1}{2} \le f \le (1-\frac{r}{2})\) : As shown in Fig. 4b, solving (26) for \(v_r^*\) at \(v_{1}^*=1\) gives

    $$\begin{aligned} v_r=1-\frac{r}{2(1-f)}, \end{aligned}$$

    thus

    $$\begin{aligned} \inf (v_1 + v_2 + v_r) = 2-\frac{r}{2(1-f)} \end{aligned}$$
    (47)
  3. 3.

    \(\left( 1-\frac{r}{2}\right) \le f \le 1\) : As can be seen from Fig. 4c, in this case \(v_1^* = \frac{2-r}{2f}\) and \(v_r^*=0\), hence

    $$\begin{aligned} \inf (v_1 + v_2 + v_r) = \frac{2-r}{2f} \end{aligned}$$
    (48)
Fig. 4
figure 4

Outage regions for individual rate related error event (\({\mathscr {E}}_1\)) in Mode \(M_2\). a For \(0 \le f \le \frac{1}{2}\), b for \(\frac{1}{2} \le f \le (1-\frac{r}{2})\), c for \((1-\frac{r}{2}) \le f \le 1\)

Finally, by using (46), (47) and (48), we get (27) and thus completes the proof. \(\square\)

1.2 Proof of Lemma 2

We follow essentially similar steps as in the case of individual rate related error event. For \(r \le 2/3\), the constraint region corresponding to the linear programming problem defined in (36) can be characterized into three distinct portions based on the value of f. These possibilities are graphically depicted in Fig. 5a, b and c. However for \(r > 2/3\), the region depicted in Fig. 5b is subsumed in to the region defined by Fig. 5a, i.e., \(\frac{1-r}{1-\frac{r}{2}} \le \frac{1}{2}\).

  1. 1.

    \(0 \le f \le \frac{1}{2}\) : Using Fig. 5a, we can conclude that the optimal values \(v_1^*=v_r^*=1-\frac{r}{2}\), i.e.,

    $$\begin{aligned} \inf (v_1 + v_2 + v_r) = 2 \left( 1-r \right) = \left( 1-\frac{r}{2} \right) + 2(1-r) \end{aligned}$$
    (49)
  2. 2.

    \(\frac{1}{2} \le f \le \frac{1-r}{1-\frac{r}{2}}\) : As shown in Fig. 5b, solving (36) for \(v_r^*\) at \(v_{1}^*=1-\frac{r}{2}\) gives

    $$\begin{aligned} v_r=1-\frac{r}{2} \left( \frac{2-f}{1-f} \right) , \end{aligned}$$

    thus

    $$\begin{aligned} \inf (v_1 + v_2 + v_r) = \left( 1-\frac{r}{2} \right) + 2 - \frac{r}{2} \left( \frac{3-2f}{1-f} \right) \end{aligned}$$
    (50)
  3. 3.

    \(\frac{1-r}{1-\frac{r}{2}} \le f \le 1\) : As can be seen from Fig. 5c, in this case \(v_1^* = \frac{1-r}{f}\) and \(v_r^*=0\), hence

    $$\begin{aligned} \inf (v_1 + v_2 + v_r) = \left( 1-\frac{r}{2} \right) + \frac{1-r}{f} \end{aligned}$$
    (51)
Fig. 5
figure 5

Outage regions for sum-rate related error event (\({\mathscr {E}}_2\)) in Mode \(M_2\). a For \(0 \le f \le \frac{1}{2}\), b for \(\frac{1}{2} \le f \le \frac{1-r}{1-\frac{r}{2}}\), c for \(\frac{1-r}{1-\frac{r}{2}} \le f \le 1\)

Finally, by using (49), (50) and (51), we get (37) and (38) and thus completes the proof. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yepuri, S., Madhukumar, A.S. & Sirigina, R.P. Limited Feedback Assisted Dynamic Decode-and-Forward Relaying for Multiple Access Relay Channel. Wireless Pers Commun 104, 1075–1090 (2019). https://doi.org/10.1007/s11277-018-6068-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6068-8

Keywords

Navigation