Skip to main content
Log in

Protocol Stack of Underwater Wireless Sensor Network: Classical Approaches and New Trends

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The oceans and rivers remain the least explored frontiers on earth but due to frequent occurrences of disasters or calamities, the researchers have shown keen interest towards underwater monitoring. Underwater Wireless Sensor Networks (UWSN) envisioned as an aquatic medium for variety of applications like oceanographic data collection, disaster management or prevention, assisted navigation, attack protection, and pollution monitoring. Like terrestrial Wireless Sensor Networks (WSN), UWSN consists of sensor nodes that collect the information and pass it to sink, however researchers have to face many challenges in executing the network in aquatic medium. Some of these challenges are mobile sensor nodes, large propagation delays, limited link capacity, and multiple message receptions. In this manuscript, broad survey of issues concerning underwater sensor networks is presented. We provide an overview of test beds, routing protocols, experimental projects, simulation platforms, tools and analysis that are available with research fraternity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan, H. P., Diamant, R., Seah, W. K., & Waldmeyer, M. (2011). A survey of techniques and challenges in underwater localization. Ocean Engineering, 38(14), 1663–1676.

    Article  Google Scholar 

  2. Gkikopouli, A., Nikolakopoulos, G., & Manesis, S. (2012, July). A survey on underwater wireless sensor networks and applications. In 20th Mediterranean conference on control & automation (MED) (pp. 1147–1154).

  3. Partan, J., Kurose, J., & Levine, B. N. (2007). A survey of practical issues in underwater networks. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 23–33.

    Article  Google Scholar 

  4. Ayaz, M., Baig, I., Abdullah, A., & Faye, I. (2011). A survey on routing techniques in underwater wireless sensor networks. Journal of Network and Computer Applications, 34(6), 1908–1927.

    Article  Google Scholar 

  5. Jiang, Z. (2008). Underwater acoustic networks–issues and solutions. International Journal of Intelligent Control and Systems, 13(3), 152–161.

    Google Scholar 

  6. Ayaz, M., & Abdullah, A. (2009, December). Underwater wireless sensor networks: Routing issues and future challenges. In Proceedings of the 7th international conference on advances in mobile computing and multimedia (pp. 370–375).

  7. Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization algorithms of underwater wireless sensor networks: A survey. Sensors, 12(2), 2026–2061.

    Article  Google Scholar 

  8. Ovaliadis, K., Savage, N., & Kanakaris, V. (2010). Energy efficiency in underwater sensor networks: A research review. Journal of Engineering Science and Technology Review (JESTR), 3(1), 151–156.

    Article  Google Scholar 

  9. Cui, J. H., Kong, J., Gerla, M., & Zhou, S. (2006). The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Network, 20(3), 12–18.

    Article  Google Scholar 

  10. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.

    Article  Google Scholar 

  11. Ma, J., Qian, C., Zhang, Q., & Ni, L. M. (2008, September). Opportunistic transmission based QoS topology control in wireless sensor networks. In 5th IEEE international conference on mobile ad hoc and sensor systems (pp. 422–427).

  12. Liu, L. (2010). A QoS-based topology control algorithm for underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 6(1), 642053.

    Article  Google Scholar 

  13. Zhou, Z., Peng, Z., Cui, J. H., & Shi, Z. (2011). Efficient multipath communication for time-critical applications in underwater acoustic sensor networks. IEEE/ACM Transactions on Networking, 19(1), 28–41.

    Article  Google Scholar 

  14. Climent, S., Capella, J. V., Meratnia, N., & Serrano, J. J. (2012). Underwater sensor networks: A new energy efficient and robust architecture. Sensors, 12(1), 704–731.

    Article  Google Scholar 

  15. Xu, M., & Liu, G. (2011, November). Fault tolerant routing in three-dimensional underwater acoustic sensor networks. IEEE international conference on wireless communications and signal processing (WCSP) (pp. 1–5).

  16. Park, M. K., & Rodoplu, V. (2007). UWAN-MAC: An energy-efficient MAC protocol for underwater acoustic wireless sensor networks. IEEE Journal of Oceanic Engineering, 32(3), 710–720.

    Article  Google Scholar 

  17. Pompili, D., Melodia, T., & Akyildiz, I. F. (2007, June). A distributed CDMA medium access control for underwater acoustic sensor networks. In Proceedings of mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 63–70).

  18. Jornet, J. M., Stojanovic, M., & Zorzi, M. (2008, September). Focused beam routing protocol for underwater acoustic networks. In Proceedings of the third ACM international workshop on underwater networks (pp. 75–82).

  19. Van Kleunen, W., Meratnia, N., & Havinga, P. J. (2011, December). Scheduled MAC in beacon overlay networks for underwater localization and time-synchronization. In Proceedings of the sixth ACM international workshop on underwater networks (pp. 1–6).

  20. Lee, S., Jeong, H. J., & Kim, D. (2012, July). A unicast based gradient routing protocol for asynchronous duty-cycling UWSNs. In IEEE fourth international conference on ubiquitous and future networks (ICUFN) (pp. 310–311).

  21. Xie, G. G., & Gibson, J. H. (2001). A network layer protocol for UANs to address propagation delay induced performance limitations. In OCEANS, 2001. MTS/IEEE conference and exhibition (Vol. 4, pp. 2087–2094).

  22. Wahid, A., Lee, S., & Kim, D. (2011, June). An energy-efficient routing protocol for UWSNs using physical distance and residual energy. In IEEE OCEANS, Spain (pp. 1–6).

  23. Bara, A. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12(7), 1950–1957.

    Article  Google Scholar 

  24. Peng, Z., Mo, H., Liu, J., Wang, Z., Zhou, H., Xu, X., et al. (2011, September). NAMS: A networked acoustic modem system for underwater applications. In IEEE OCEANS (pp. 1–5).

  25. Domingo, M. C. (2011). Securing underwater wireless communication networks. IEEE Wireless Communications, 18(1), 22–28.

    Article  Google Scholar 

  26. Casari, P., & Harris, A. F. (2007, September). Energy-efficient reliable broadcast in underwater acoustic networks. In Proceedings of the second ACM workshop on underwater networks (pp. 49–56).

  27. Peng, Z., Cui, J. H., Wang, B., Ball, K., & Freitag, L. (2007, September). An underwater network testbed: Design, implementation and measurement. In Proceedings of the second ACM workshop on underwater networks (pp. 65–72).

  28. Nimbalkar, A. A., & Pompili, D. (2008, September). Reliability in underwater inter-vehicle communications. In Proceedings of the third ACM international workshop on underwater networks (pp. 19–26).

  29. Montana, J. M. J. (2008). AUVNetSim: A simulator for underwater acoustics networks. Massachusetts Institute of Technology. Sea Grant College Program.

  30. Torres, D., Friedman, J., Schmid, T., & Srivastava, M. B. (2009, November). Software-defined underwater acoustic networking platform. In Proceedings of the fourth ACM international workshop on underwater networks (pp. 1–7).

  31. Goetz, M., Azad, S., Casari, P., Nissen, I., & Zorzi, M. (2011, December). Jamming-resistant multi-path routing for reliable intruder detection in underwater networks. In Proceedings of the sixth ACM international workshop on underwater networks (pp. 1–10).

  32. Kim, Y., & Park, S. H. (2011). A query result merging scheme for providing energy efficiency in underwater sensor networks. Sensors, 11(12), 11833–11855.

    Article  Google Scholar 

  33. Cao, R., & Yang, L. (2010, September). Reliable transport and storage protocol with fountain codes for underwater acoustic sensor networks. In Proceedings of the Fifth ACM international workshop on underwater networks (pp. 1–14).

  34. Peng, Z., Le, S., Zuba, M., Mo, H., Zhu, Y., Pu, L., & Cui, J. H. (2011, June). Aqua-TUNE: A testbed for underwater networks. In IEEE OCEANS, Spain (pp. 1–9).

  35. Zuba, M., Shi, Z., Peng, Z., & Cui, J. H. (2011, December). Launching denial-of-service jamming attacks in underwater sensor networks. In Proceedings of the sixth ACM international workshop on underwater networks (pp. 1–12).

  36. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2015). A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, 34, 144–156.

    Article  Google Scholar 

  37. Curiac, D. I. (2016). Towards wireless sensor, actuator and robot networks: Conceptual framework, challenges and perspectives. Journal of Network and Computer Applications, 63, 14–23.

    Article  Google Scholar 

  38. Das, A. P., & Thampi, S. M. (2017). Fault-resilient localization for underwater sensor networks. Ad Hoc Networks, 55, 132–142.

    Article  Google Scholar 

  39. Dhurandher, S. K., Obaidat, M. S., & Gupta, M. (2013). Energized geocasting model for underwater wireless sensor networks. Simulation Modelling Practice and Theory, 37, 125–138.

    Article  Google Scholar 

  40. Gholami, E., Rahmani, A. M., & Fooladi, M. D. T. (2015). Adaptive and distributed TDMA scheduling protocol for wireless sensor networks. Wireless Personal Communications, 80(3), 947–969.

    Article  Google Scholar 

  41. Kumar, M., & Goyal, N. (2014). Reviewing underwater acoustic wireless sensing networks. International Journal of Computer Science and Technology, 5(2), 95–98.

    Google Scholar 

  42. Goyal, N., Dave, M., & Verma, A. K. (2014, February). Fuzzy based clustering and aggregation technique for under water wireless sensor networks. In IEEE international conference on electronics and communication systems (ICECS) (pp. 1–5).

  43. Goyal, N., Dave, M., & Verma, A. K. (2016). Energy efficient architecture for intra and inter cluster communication for underwater wireless sensor networks. Wireless Personal Communications, 89(2), 687–707.

    Article  Google Scholar 

  44. Goyal, N., Dave, M., & Verma, A. K. (2017). Improved data aggregation for cluster based underwater wireless sensor networks. Proceedings of National Academy of Sciences, India, Sect. A Physical Sciences (pp. 1–11).

  45. Han, G., Liu, L., Jiang, J., Shu, L., & Rodrigues, J. J. (2016). A collaborative secure localization algorithm based on trust model in underwater wireless sensor networks. Sensors, 16(2), 229.

    Article  Google Scholar 

  46. Harb, H., Makhoul, A., & Couturier, R. (2015). An enhanced K-means and ANOVA-based clustering approach for similarity aggregation in underwater wireless sensor networks. IEEE Sensors Journal, 15(10), 5483–5493.

    Article  Google Scholar 

  47. Ilyas, N., Akbar, M., Ullah, R., Khalid, M., Arif, A., Hafeez, A., et al. (2015). SEDG: Scalable and efficient data gathering routing protocol for underwater WSNs. Procedia Computer Science, 52, 584–591.

    Article  Google Scholar 

  48. Izadi, D., Abawajy, J., & Ghanavati, S. (2015). An alternative clustering scheme in WSN. IEEE Sensors Journal, 15(7), 4148–4155.

    Article  Google Scholar 

  49. Jadidoleslamy, H., Aref, M. R., & Bahramgiri, H. (2016). A fuzzy fully distributed trust management system in wireless sensor networks. AEU-International Journal of Electronics and Communications, 70(1), 40–49.

    Article  Google Scholar 

  50. Jia, J., & Meng, J. (2016). Impulsive noise rejection for ZigBee communication systems using Error-Balanced Wavelet filtering. AEU-International Journal of Electronics and Communications, 70(5), 558–567.

    Article  Google Scholar 

  51. Kumar, R. (2014). A survey on data aggregation and clustering schemes in underwater sensor networks. International Journal of Grid and Distributed Computing, 7(6), 29–52.

    Article  Google Scholar 

  52. Kredo II, K., & Mohapatra, P. (2011, December). Scheduling granularity in underwater acoustic networks. In Proceedings of the sixth ACM international workshop on underwater networks (pp. 1–7).

  53. Proctor, A. A., Bradley, C., Gamroth, E., & Kennedy, J. (2011, December). Extendible underwater positioning and communication system for AUVS. In Proceedings of the sixth ACM international workshop on underwater networks (pp. 1–14).

  54. Song, M. A. O., & Zhao, C. L. (2011). Unequal clustering algorithm for WSN based on fuzzy logic and improved ACO. The Journal of China Universities of Posts and Telecommunications, 18(6), 89–97.

    Article  Google Scholar 

  55. Kim, D., Wang, W., Ding, L., Lim, J., Oh, H., & Wu, W. (2010). Minimum average routing path clustering problem in multi-hop 2-D underwater sensor networks. Optimization Letters, 4(3), 383–392.

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, Z., Guo, Z., Hong, F., & Hong, L. (2013). E2DTS: An energy efficiency distributed time synchronization algorithm for underwater acoustic mobile sensor networks. Ad Hoc Networks, 11(4), 1372–1380.

    Article  Google Scholar 

  57. Hong, L., Hong, F., Yang, B., & Guo, Z. (2013). ROSS: Receiver oriented sleep scheduling for underwater sensor networks. In Proceedings of the 8th ACM international conference on underwater networks and systems, Taiwan (p. 4).

  58. Domingo, M. C. (2013). Marine communities based congestion control in underwater wireless sensor networks. Information Sciences, 228, 203–221.

    Article  MathSciNet  Google Scholar 

  59. Karimi, H., Medhati, O., Zabolzadeh, H., Eftekhari, A., Rezaei, F., & Dehno, S. B. (2015). Implementing a reliable, fault tolerance and secure framework in the wireless sensor-actuator networks for events reporting. Procedia Computer Science, 73, 384–394.

    Article  Google Scholar 

  60. Liu, Y., Liu, A., & He, S. (2015). A novel joint logging and migrating traceback scheme for achieving low storage requirement and long lifetime in WSNs. AEU-International Journal of Electronics and Communications, 69(10), 1464–1482.

    Article  Google Scholar 

  61. Manjula, R. B., & Manvi, S. S. (2012, December). Cluster based data aggregation in underwater acoustic sensor networks. In India conference (INDICON), Annual IEEE (pp. 104–109).

  62. Nowsheen, N., Karmakar, G., & Kamruzzaman, J. (2016). PRADD: A path reliability-aware data delivery protocol for underwater acoustic sensor networks. Journal of Network and Computer Applications, 75, 385–397.

    Article  Google Scholar 

  63. Rahman, A. U., Alharby, A., Hasbullah, H., & Almuzaini, K. (2016). Corona based deployment strategies in Wireless Sensor Network: A survey. Journal of Network and Computer applications, 64, 176–193.

    Article  Google Scholar 

  64. Rezvani, M., Ignjatovic, A., Bertino, E., & Jha, S. (2015). Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks. IEEE Transactions on Dependable and Secure Computing, 12(1), 98–110.

    Article  Google Scholar 

  65. Senel, F., Akkaya, K., Erol-Kantarci, M., & Yilmaz, T. (2015). Self-deployment of mobile underwater acoustic sensor networks for maximized coverage and guaranteed connectivity. Ad Hoc Networks, 34, 170–183.

    Article  Google Scholar 

  66. Shen, H., & Bai, G. (2016). Routing in wireless multimedia sensor networks: A survey and challenges ahead. Journal of Network and Computer Applications, 71, 30–49.

    Article  Google Scholar 

  67. Tran, K. T. M., Oh, S. H., & Byun, J. Y. (2013). An Efficient Data Aggregation Approach for Underwater Wireless Sensor Networks, 24, 46–48.

    Google Scholar 

  68. Tran, K. T. M., Oh, S. H., & Byun, J. Y. (2013). Well-suited similarity functions for data aggregation in cluster-based underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 9(8), 645243.

    Article  Google Scholar 

  69. Tran, K. T. M., & Oh, S. H. (2014). Uwsns: A round-based clustering scheme for data redundancy resolve. International Journal of Distributed Sensor Networks, 10(4), 383912.

    Article  Google Scholar 

  70. Vennila, C., & Madhura, M. (2016). An energy-efficient attack resistant trust model for underwater wireless sensor networks. Middle-East Journal of Scientific Research., 24(S2), 33–39.

    Google Scholar 

  71. Xu, M., Liu, G., & Guan, J. (2015). Towards a secure medium access control protocol for cluster-based underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 11(5), 325474.

    Article  Google Scholar 

  72. Zenia, N. Z., Aseeri, M., Ahmed, M. R., Chowdhury, Z. I., & Kaiser, M. S. (2016). Energy-efficiency and reliability in MAC and routing protocols for underwater wireless sensor network: A survey. Journal of Network and Computer Applications, 71, 72–85.

    Article  Google Scholar 

  73. Domingo M. C., Prior R. (2007). A distributed clustering scheme for underwater wireless sensor networks. In IEEE 18th international symposium on personal, indoor and mobile radio communications, Athens (pp. 1–5).

  74. Ayaz, M., Abdullah, A., & Jung, L. T. (2010). Temporary cluster based routing for underwater wireless sensor networks. In International symposium on information technology, Kuala Lumpur (pp. 1009–1014).

  75. Huang, C., Wang, Y., Lin, C., Chen, Y., Chen, H., Shen, H., et al. (2010). A self-healing clustering algorithm for underwater sensor networks. Cluster Computing, 14(1), 91–99.

    Article  Google Scholar 

  76. Wu, Z., Tian, C., Jiang, H., & Liu, W. (2011). Minimum-latency aggregation scheduling in underwater wireless sensor networks. In IEEE international conference on communications (ICC), Kyoto (pp. 1–5).

  77. Kartha, J., & Jacob, L. (2017). Network lifetime-aware data collection in underwater sensor networks for delay-tolerant applications. Sādhanā, 42(10), 1645–1664.

    Article  MathSciNet  MATH  Google Scholar 

  78. Manjula, R. B., & Manvi, S. S. (2011). Issues in underwater acoustic sensor networks. International Journal of Computer and Electrical Engineering, 3(1), 101.

    Google Scholar 

  79. Goyal, N., Dave, M., & Verma, A. K. (2017). Data aggregation in underwater wireless sensor network: Recent approaches and issues. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2017.04.007.

    Article  Google Scholar 

  80. Goyal, N., Dave, M., & Verma, A. K. (2018). A novel technique for fault detection and recovery by using BCH for cluster based UWSNs. International Journal of Communication Systems, 31(4), e3485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Goyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, N., Dave, M. & Verma, A.K. Protocol Stack of Underwater Wireless Sensor Network: Classical Approaches and New Trends. Wireless Pers Commun 104, 995–1022 (2019). https://doi.org/10.1007/s11277-018-6064-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6064-z

Keywords

Navigation