Skip to main content
Log in

Analysis of Sun Flower Shaped Monopole Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The theoretical analysis of nature inspired antenna along with measured results of fabricated prototype is presented in this work. The space between successive antenna elements in form of spirals behaves as a leakage cavity which represents incident wave’s amplitude increases by existence of seed’s cavity. Our antenna design converts incident signal into high strength signal in term of amplitude which is major requirement in satellite communication system. The proposed design has low profile and improved noise figure which enhance its suitability in satellite communication. The measured results are also found to be in concurrence with simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh, I., & Tripathi, V. S. (2011). Microstrip patch antenna and its application. International Journal of Computer Technology and Applications, 2(5), 1595–1599.

    Google Scholar 

  2. Li, Y., Zhang, Z., Zheng, J., Feng, Z., & Iskander, M. F. (2012). A compact hepta–band loop-inverted F reconfigurable antenna for mobile phone. IEEE Transactions on Antennas and Propagation, 60(1), 389–392.

    Article  Google Scholar 

  3. Cho, J., Jung, W., & Kim, K. (2009). Frequency—Reconfigurable two-port antenna for mobile phone operating over multiple service bands. Electronic Letter, 45, 1009–1011.

    Article  Google Scholar 

  4. Puri, M., Mishra, P. K., & Dhanik, S. S. (2013). Design and simulation of double ridged horn antenna operating for UWB application. In Annual IEEE conference (India).

  5. Meshram, M. K., & Vishvakarma, B. R. (2001). Gap -coupled microstrip array antenna for wide-band operation. International Journal of Electronics, 88, 1161–1175.

    Article  Google Scholar 

  6. James, J. R., & Hall, P. S. (1989). Hand book of microstrip antennas. London: Peter Peregrinus Ltd.

    Book  Google Scholar 

  7. Jangid, K. G., Kulkar, V. S., Sharma, V., Tiwari, A., Sharma, B., & Bhatnagar, D. (2014). Compact circular micro-strip patch antenna with modified ground plane for broadband performance. In International conference on signal propagation and computer technology (pp. 25–28).

  8. Kumar, P., & Singh, G. (2012). Advantage computational technique in electromagnetic. In 4th international conference on communication system and network technologies, IJECS-IJENS.

  9. Singh, P., Ray, K., & Rawat, S. (2016). Nature inspired sunflower shaped microstrip antenna for wideband performance. International Journal of Computer Information System and Industrial management Applications (IJCISM), 8, 364–371.

    Google Scholar 

  10. Surjati, I., & Yuli, K. N. (2010). Increasing bandwidth dual frequency triangular micro-strip antenna for wi-max application. International Journal of Electrical & Computer Science, 10(06), 16–20.

    Google Scholar 

  11. Rawat, S., & Sharma, K. K. (2014). Stacked configuration of rectangular and hexagonal patches with shorting pin for circularly polarized wide band performance. Central European Journal of Engineering, 4, 20–26.

    Google Scholar 

  12. Vigano, M. C. (2011). Sunflower array antenna for multi-beam satellite application. Ph.D. thesis, Delft University of Technology.

  13. Vogel, H. (1997). A better way to construction the sunflower head. Mathematical Bioscience, 44, 179–189.

    Article  Google Scholar 

  14. Ramat-samii, Y., Kovita, J. M., & Raja gopalan, H. (2012). Nature-inspired optimization technique in communication antenna design. Proceeding of the IEEE, 100(7), 2132–2144.

    Article  Google Scholar 

  15. Rawat, S., & Sharma, K. K. (2014). Annular ring microstrip patch antenna with finite ground plane for ultra-wideband applications. International Journal of Microwave and Wireless Technologies, 7(2), 179–184.

    Article  Google Scholar 

  16. Rawat, S., & Sharma, K. K. (2015). A compact broadband microstrip patch antenna with defected ground structure for C-band applications. Central European Journal of Engineering, 4(3), 287–292.

    Google Scholar 

  17. Ryan, G. W., Rouse, J. L., & Bursill, L. A. (1991). Quantitative analysis of sunflower seed packing. Journal of Theoretical Biology, 147, 303–328.

    Article  Google Scholar 

  18. Grob, V., Pfeifer, E., & Rutishause, R. R. (2007). Sympodial construction of Fibonacci-type leaf rosettes in Pinguicula moranensis (lentibulariaceae). Annals of Botany, 100(4), 857–863.

    Article  Google Scholar 

  19. Singh, R., Kumari, P., Singh, P., Rawat, S., & Ray, K. (2018). Novel miniaturized microstrip patch antenna for body centric wireless communication in ISM band. In M. Pant, K. Ray, T. Sharma, S. Rawat & A. Bandyopadhyay (Eds.), Soft computing: Theories and applications. Advances in intelligent systems and computing (Vol. 584, pp. 113–122). Singapore: Springer.

    Google Scholar 

  20. Delgado, J. A. V., & Mera, C. A. V. (2013). A bio-inspired patch antenna array using Fibonacci sequence in oak-tree. Published research report, USA.

  21. Takaki, R., Ogiso, Y., Hayashi, M., & Katsu, A. (2003). Simulation of sunflower spiral and Fibonacci numbers. Tokyo: Tokyo Institute of Technology.

    Google Scholar 

  22. Holm, S., Austeng, A., Iranpour, K., & Hopperstad, J. F. (2001). Sparse sampling in array processing. In F. Marvasti (Ed.), Sampling theory. New York, NY: Springer.

    Google Scholar 

  23. Dunlap, R. A. (1997). The golden ratio and Fibonacci numbers. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  24. Toshniwal, S., Sharma, S., Rawat, S., Singh, P., & Ray, K. (2016). Compact design of rectangular patch antenna with symmetrical U slots on partial ground for UWB applications. In V. Snášel, A. Abraham, P. Krömer, M. Pant & A. Muda (Eds.), Innovations in bio-inspired computing and applications. Advances in intelligent systems and computing (Vol. 424, pp. 535–542). Cham: Springer.

    Chapter  Google Scholar 

  25. Rawat, S., Keshwala, U., & Ray, K. (2018). Compact design of modified pentagon shaped monopole antenna for UWB applications. International Journal of Electrical and Electronic Engineering & Telecommunications, 7(2), 66–69.

    Article  Google Scholar 

  26. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2014). Cognitive—Radio and antenna functionalities: A tutorial [Wireless Corner]. IEEE Antenna and Propagation Magazine, 56(1), 231–243.

    Article  Google Scholar 

  27. Nasimuddin, N., Chen, Z. N., & Qing, X. (2016). Bandwidth enhancement of a single-feed circulary polarized antenna using a metasurface: Metamaterial-based wideband CP rectangular microstrip antenna. IEEE Antenna and Propagation Magazine, 58(2), 39–46.

    Article  Google Scholar 

  28. Ta, S. X., Park, I., & Ziolkowski, R. W. (2015). Crossed dipole antenna: Are view. Mobile—Phone antenna design. IEEE Antenna and Propagation Magazine, 3(3), 177–178.

    Google Scholar 

  29. Laxmi, Y. P., Roa, M. U., & Bahu, B. S. (2016). A dual band shaped microstrip patch antenna for 2.4 GHz and 5.4 GHz applications. IEEE Antenna and Propagation Magazine, 54(4), 14–34.

    Google Scholar 

  30. Chacko, B. P., Augustin, G., & Denidni, T. A. (2016). FPC antenna: C-band point-to-point communication systems. IEEE Antenna and Propagation Magazine, 58(1), 56–64.

    Article  Google Scholar 

  31. Bayer, H., Krauss, A., Zaiczek, T., Stephan, R., Rosenblatt, O. E., & Hein, M. A. (2016). Ka-band user terminal antenna for satellite communications [Antenna application corner] Mobile-phone antenna design. IEEE Antenna and Propagation Magazine, 54(8), 76–88.

    Article  Google Scholar 

  32. Singh, P., Ray, K., & Rawat, S. (2016). Design of nature inspired broadband microstrip patch antenna for satellite communication. In N. Pillay, A. Engelbrecht, A. Abraham, M. du Plessis, V. Snášel & A. Muda (Eds.), Advances in nature and biologically inspired computing (Vol. 419, pp. 369–379). Cham: Springer.

    Chapter  Google Scholar 

  33. Singh, P., Ocampo, M., Lugo, J. E., Doti, R., Faubert, J., Rawat, S., et al. (2018). Fractal and periodical biological antenna: hidden topologies in DNA. In K. Ray, M. Pant & A. Bandyopadhyay (Eds.), Soft computing applications. Studies in computational intelligence (Vol. 761, pp. 113–130). Singapore: Springer.

    Google Scholar 

  34. Keshwala, U., Rawat, S., Ray, K. (2018). Nature inspired dual band sneezewort plant growth pattern shaped antenna. In IEEE Asia Pacific microwave conference (APMC) (pp. 580–583).

  35. Singh, P., Doti, R., Lugo, J. E., Faubert, J., Rawat, S., Ghosh, S., et al. (2018). Biological infrared antenna and radar. In M. Pant, K. Ray, T. Sharma, S. Rawat & A. Bandyopadhyay (Eds.), Soft computing: Theories and applications. Advances in intelligent systems and computing (Vol. 584, pp. 323–332). Singapore: Springer.

    Google Scholar 

  36. Singh, P., Ocampo, M., Lugo, J. E., Doti, R., Faubert, J., Rawat, S., et al. (2018). DNA as an electromagnetic fractal cavity resonator: Its universal sensing and fractal antenna behavior. In M. Pant, K. Ray, T. Sharma, S. Rawat & A. Bandyopadhyay (Eds.), Soft computing: Theories and applications. Advances in intelligent systems and computing (Vol. 584, pp. 213–223). Singapore: Springer.

    Google Scholar 

  37. Singh, P., Doti, R., Lugo, J. E., Faubert, J., Rawat, S., Ghosh, S., et al. (2018). Biological infrared antenna and radar. In M. Pant, K. Ray, T. Sharma, S. Rawat & A. Bandyopadhyay (Eds.), Soft computing: Theories and applications. Advances in intelligent systems and computing (Vol. 584, pp. 323–332). Singapore: Springer.

    Google Scholar 

  38. Singh, P., Ray, R., & Bandyopadhyay, A. (2018). Complete dielectric resonator model of human brain from MRI data: A journey from connectome neural branching to single protein. In K. Ray, S. N. Sharan, S. Rawat, S. K. Jain, S. Srivastava & A. Bandyopadhyay (Eds.), Lecture notes in electrical engineering (Vol. 478). Springer, ICoEVCI, India (Under press).

  39. Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken: Wiley.

    Google Scholar 

  40. Prasad, K. D., & Prakashan, S. (2001). Antennas and wave propagation (3rd ed.). New York: Tech Publications.

    Google Scholar 

  41. Collin, R. E. (2000). Foundations for microwave engineering (2nd ed.)., IEEE press series on electromagnetic wave theory Hoboken: Wiley.

    Google Scholar 

  42. Gupta, R. K., & Das, S. K. (1997). Physical properties of sunflower seeds. Journal of Agricultural Engineering Research, 66(1), 1–8.

    Article  MathSciNet  Google Scholar 

  43. Páez, E., Callarotti, R., Azpúrua, M., & Sánchez, Y. (2014). Determination of the equivalent circuit for a cylindrical loop-coupled cavity resonator. In IEEE, CPEM 2014.

  44. Heong, O. K., Hock, G. C., Chakrabarty, C. K., & Hock, G. T. (2013). Generalized equivalent circuit model for ultra wideband antenna structure with double steps for energy scavenging. In IOP conference series: Earth and environmental science, Vol. 16.

  45. Ansarizadeh, M., & Ghorbani, A. (2008). An approach to equivalent circuit modeling of rectangular microstrip antennas. Progress in Electromagnetics Research B, 8, 77–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Rawat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Ray, K. & Rawat, S. Analysis of Sun Flower Shaped Monopole Antenna. Wireless Pers Commun 104, 881–894 (2019). https://doi.org/10.1007/s11277-018-6056-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6056-z

Keywords

Navigation