Frequency Tunable Graphene Metamaterial Reflectarray

  • S. H. Zainud-Deen
  • A. M. Mabrouk
  • H. A. Malhat


In this paper, the radiation characteristics of frequency tunable graphene based metamaterial reflectarray have been investigated. The unit-cell consists of graphene two gaps split-ring-resonator (SRR) printed on a thick SiO2 substrate. The metamaterial parameters of the unit-cell have been calculated at different graphene chemical potentials and different SRR gaps. Using waveguide simulator, the reflection coefficient phase of the graphene metamaterial reflectarray unit-cell has been investigated. A 13 × 13 graphene metamaterial reflectarray antenna fed by a circular horn antenna is designed and analyzed at different graphene chemical potentials. Full-wave analysis for the graphene metamaterial reflectarray antenna has been applied using the finite integration technique.


Graphene Metamaterial Reflectarray 



  1. 1.
    Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 11, 107. Scholar
  2. 2.
    Kadam, N. T., Janwalkar, K. S., & Odhekar, A. A. (2015). Parameter extraction for negative index metamaterials. In International conference on computer technology. Google Scholar
  3. 3.
    Tao, H., Padilla, W. J., Zhang, X., & Averitt, R. D. (2011). Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE Journal on Selected Topics in Quantum Electronics, 17, 92–101. Scholar
  4. 4.
    Andryieuski, A., & Lavrinenko, A. V. (2013). Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach. Optics Express, 21, 9144–9155. Scholar
  5. 5.
    Bao, W. (2012). Electrical and mechanical properties of graphene. Ph.D. Thesis, University of California, USA.Google Scholar
  6. 6.
    Zainud-Deen, S. H., Malhat, H. A., Gaber, S. M., Ibrahim, M., & Awadalla, K. H. (2012). Plasma reflectarray. Plasmonics, 8, 1469–1475. Scholar
  7. 7.
    Shaker, J., Chaharmir, M. R., & Ethier, J. (2013). Reflectarray antennas. Artech House.Google Scholar
  8. 8.
    Liu, L., & Hattori, H. T. (2015). Tunable terahertz metamaterials based on ultra-subwavelength graphene-dielectric structures. In 20th microoptics conference (MOC), Fukuoka (pp. 1–2).
  9. 9.
    Rouhi, N., Capdevila, S., Jain, D., Zand, K., Wang, Y., Brown, E., et al. (2012). Terahertz graphene optics. Nano Research Journal, 5(10), 667–678. Scholar
  10. 10.
    Hanson, G. W. (2008). Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Transactions on Antennas and Propagation, 56(3), 747–757. Scholar
  11. 11.
    Hassan, W. M. (2016). Analysis and design of high gain lens antennas. Ph.D. Thesis, Faculty of Electronic Engineering, Menoufia University, Egypt.Google Scholar
  12. 12.
    Chen, X., Grzegorczyk, T. M., Wu, B. I., Pacheco, J., & Kong, J. A. (2004). Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E, 70, 016608-1–016608-7. Scholar
  13. 13.
    Malhat, H. A., Zainud-Deen, S. H., & Gaber, S. M. (2014). Graphene based transmitarray for terahertz applications. Progress in Electromagnetics Research M, 36, 185–191. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. H. Zainud-Deen
    • 1
  • A. M. Mabrouk
    • 2
  • H. A. Malhat
    • 1
  1. 1.Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  2. 2.Faculty of Engineering and TechnologyBadr University in CairoBadrEgypt

Personalised recommendations