Joint Estimation of MIMO Channel Parameters Using Space–Time Correlation Matrix for Different Angular Distributions

  • Nessrine Ben Rejeb
  • Ines Bousnina
  • Mohamed Bassem Ben Salah
  • Abdelaziz Samet
Article
  • 7 Downloads

Abstract

In this paper, we propose a new low-complexity method to jointly estimate the multiple-input multiple-output (MIMO) channel parameters namely the mean angle of arrival (AoA), the angular spread (AS) and the maximum Doppler spread (DS). We consider Gaussian and Laplacian angular distributions for the incoming AoAs in the case of a Rayleigh channel model. Our estimator is based on the magnitudes and phases of the space–time correlation functions of the received signals. To this end, closed-form expressions of the required functions were derived. Two different approaches are studied using these cross-correlation functions; first at a non zero time lag and second at two different time lags. To evaluate the robustness of the proposed estimator, the two Stage approach and the improved maximum likelihood method based on the Gauss Newton algorithm are taken as benchmarks for the mean AoA and the AS estimation. For the maximum DS, the two Rays and the auto-correlation based algorithms are chosen. Simulation results show that the proposed estimator offers more accurate estimates in almost all considered scenarios. We also compare our work to a recent joint estimator which exploits the Derivatives of the cross-correlation function (DCCF). Our method outperforms the DCCF algorithm at a lower computational cost.

Keywords

Joint estimation Mean angle of arrival Angular spread Maximum doppler spread Space–time correlation MIMO channel 

Notes

References

  1. 1.
    Lee, M., & Cho, D. (2001). A new adaptative power control scheme based on mobile velocity in wireless mobile communication systems. IEEE Vehicular Technology Conference, 4, 2878–2882.Google Scholar
  2. 2.
    Vijayan, R., & Holtzman, J. M. (1993). A model for analyzing handoff algorithms. IEEE Transactions on Vehicular Technology, 42, 351–356.CrossRefGoogle Scholar
  3. 3.
    Austin, M. D., & Stuber, G. L. (1994). Velocity adaptative handoff algorithms for microcellular systems. IEEE Transactions on Vehicular Technology, 43, 549–561.CrossRefGoogle Scholar
  4. 4.
    Sun, C., Cheng, J., & Ohira, T. (2008). Handbook on advancements in smart antenna technologies for wireless networks. New York: Information Science Publishing.Google Scholar
  5. 5.
    Kikuchi, S., Sano, A., Tisuji, H., & Miura, R. (2004). Mobile localization using local scattering model in multipath environments. In Proceedings of IEEE 60th VTC (Vol. 60, pp. 339–343).Google Scholar
  6. 6.
    Rao, A. M., & Jones, D. L. (2003). Efficient detection with arrays in the presence of angular spreading. IEEE Transactions on Signal Processing, 51(2), 301–312.CrossRefGoogle Scholar
  7. 7.
    Zhang, H., & Abdi, A. (2009). Nonparametric mobile speed estimation in fading channels: Performance analysis and experimental results. IEEE Transactions on Wireless Communications, 8, 1683–1692.CrossRefGoogle Scholar
  8. 8.
    Tsai, Y. R., & Yang, K. J. (2009). Approximate ML Doppler spread estimation over flat rayleigh fading channels. IEEE Signal Processing Letters, 16(11), 1007–1010.CrossRefGoogle Scholar
  9. 9.
    Baddour, K., & Beaulieu, N. C. (2005). Robust Doppler spread estimation in nonisotropic fading channels. IEEE Transactions Wireless Communication, 4, 2677–2682.CrossRefGoogle Scholar
  10. 10.
    Tepedelenlioglu, C., & Giannakis, G. B. (2001). On velocity estimation and correlation properties of narrow-band mobile communication channels. IEEE Transactions on Vehicular Technology, 50(4), 1039–1052.CrossRefGoogle Scholar
  11. 11.
    Souden, M., Affes, S., Benesty, J., & Bahroun, R. (2009). Robust Doppler spread estimation in the presence of a residual carrier frequency offset. IEEE Transactions on Signal Processing, 57, 4148–4153.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ko, Y. C., & Jeong, G. (2002). Doppler spread estimation in mobile communication systems. Vehicular Technology Conference VTC Spring, 4, 1941–1945.Google Scholar
  13. 13.
    Ali, G. A., Manzoor, S., & Jeoti, V. (2010). A new Doppler spread estimation algorithm based on zero crossings of the auto-correlation. In International Conference on Intelligent and Advanced Systems (ICIAS).Google Scholar
  14. 14.
    Yunhe, C. (2010). Joint estimation of angle and Doppler frequency for bistatic MIMO radar. Electronics Letters, 46, 170–172.CrossRefGoogle Scholar
  15. 15.
    Bengtsson, M., & Ottersten, B. (2000). Low-complexity estimators for distributed sources. IEEE Transactions on Signal Processing, 48(8), 2185–2194.CrossRefGoogle Scholar
  16. 16.
    Souden, M., Affes, S., & Benesty, J. (2008). A two-stage approach to estimate the angles of arrival and the angular spreads of locally scattered sources. IEEE Transactions on Signal Processing, 56(5), 1968–1983.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kikuchi, S., Sano, A., Tsuji, H., & Miura, R. (2003). A novel approach to mobile-terminal positioning using single array antenna in urban environments. IEEE Conference on Vehicular Technology VTC-Fall, 2, 1010–1014.Google Scholar
  18. 18.
    Li, J., & Zhang, X. (2011). Improved joint DoD and DoA estimation for MIMO array with velocity receive sensors. IEEE Signal Processing Letters, 18, 717–720.CrossRefGoogle Scholar
  19. 19.
    Yan, H., Li, J., & Liao, G. (2008). Multitarget identification and localization using bistatic MIMO radar systems. EURASIP Journal on Advances in Signal Processing, 2008, 48.CrossRefMATHGoogle Scholar
  20. 20.
    Jinli, C., Hong, G., & Weimin, S. (2008). Angle estimation using esprit without pairing in MIMO radar. Electronics Letters, 44, 1422–1423.CrossRefGoogle Scholar
  21. 21.
    Li, J., Conan, J., & Pierre, S. (2006). Using antenna array in multipath environment for wireless sensor positioning. In Vehicular Technology Conference, VTC Fall IEEE (Vol. 64).Google Scholar
  22. 22.
    Ben Rejeb, N., Bousnina, I., Ben Salah, M. B., & Samet, A. (2014). Joint mean angle of arrival, angular and Doppler spreads estimation in macrocell environments. Eurasip Journal on Advances in Signal Processing, 2014, 133.CrossRefGoogle Scholar
  23. 23.
    Ben Rejeb, N., Bousnina, I., Ben Salah, M. B., & Samet, A. (2015). Mean angle of arrival, angular and Doppler spreads estimation in MIMO system. IET Signal Processing, 9(5), 395–402.CrossRefGoogle Scholar
  24. 24.
    Abdi, A., & Kaveh, M. (2002). Parametric modeling and estimation of the spatial characteristics of a source with local scattering. IEEE International Conference on Acoustics, Speech, and Signal Processing, 3, 2821–2824.Google Scholar
  25. 25.
    Pedersen, K. I., Mogensen, P. E., & Fleury, B. H. (1997). Power azimuth spectrum in outdoor environments. Electronics Letters, 33, 1583–1584.CrossRefGoogle Scholar
  26. 26.
    Tsai, J.-A, Buehrer, R. M., & Woerner, B. D. (2002). The impact of AOA energy distribution on the spatial fading correlation of linear antenna array. IEEE 55th Vehicular Technology Conference, VTC Spring.Google Scholar
  27. 27.
    Abdi, A., & Kaveh, M. (2002). A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE Journal on Selected Areas in Communications, 20, 550–560.CrossRefGoogle Scholar
  28. 28.
    Bousnina, I., Stephenne, A., Affes, S., & Samet, A. (2011). A new low-complexity angular spread estimator in the presence of line-of-sight with angular distribution selection. EURASIP Journal on Advances in Signal Processing, 2011, 88.CrossRefGoogle Scholar
  29. 29.
    Universal Mobile Telecommunications System (UMTS); Spatial channel model for multiple input multiple output (MIMO) simulations (3GPP TR 25.996 version 11.0.0 Release 11). September 2012.Google Scholar
  30. 30.
    Spiegel, M. R., & Liu, J. (1999). Schaum’s mathematical handbook of formulas and tables (2nd ed.). New York: MacGraw Hill.Google Scholar
  31. 31.
    Kendall, W. B. (1965). Unambiguous accuracy of an interferometer angle-measuring system. IEEE Transactions on Space Electronics and Telemetry, SET–11, 62–70.CrossRefGoogle Scholar
  32. 32.
    Trump, Tonu, & Ottersten, Bjorn. (1996). Estimation of nominal direction of arrival and angular spread using an array of sensors. ELSEVIER Signal Processing Special Issue on Subspace Methods Part I: Array Signal Processing and Subspace Computations, 50, 57–69.CrossRefMATHGoogle Scholar
  33. 33.
    Tepedelenlioglu, Cihan. (2002). Performance analysis of velocity (Doppler) estimators in mobile communications. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 3, 2201–2204.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nessrine Ben Rejeb
    • 1
  • Ines Bousnina
    • 1
  • Mohamed Bassem Ben Salah
    • 1
  • Abdelaziz Samet
    • 1
  1. 1.SERCOM Laboratory, Tunisian Polytechnic SchoolUniversity of CarthageLa MarsaTunisia

Personalised recommendations