Angled Split-Ring Artificial Magnetic Conductor for Gain Enhancement in Microstrip Patch Antenna for Wireless Applications
- 4 Downloads
Abstract
A multiband rectangular microstrip patch antenna integrated with angled split- ring artificial magnetic conducting (AMC) structure is proposed. In order to achieve high gain, directivity and radiation efficiency, an \(3\times 2\) array of proposed angled split-ring patches which has multiple in-phase reflection phase characteristics at S-band (2–4 GHz) is presented as a reflector. A rectangular microstrip patch antenna integrated with the proposed angled split-ring AMC is fabricated, tested and its parameters are compared with the microstrip patch antenna backed with a flat metal sheet, and microstrip patch antenna integrated with conventional split-ring AMC structure. The presence of high scattered field amplitude between the angled arms lead to improved radiation characteristics and make the antenna more suitable for real-time wireless applications. The antenna attains 2.138 dBi increment in gain and 1.87 dBi increment in directivity when it is backed with the proposed angled split-ring artificial magnetic conducting structure instead of a flat metal sheet. A good pact is obtained between the simulated and the measured results.
Keywords
Artificial magnetic conductor High impedance Conventional split-ring AMC Angled split-ring AMC Field amplitudeNotes
References
- 1.Anand, S., & Gloria, J. J. P. (2016). RF MEMS based reconfigurable rectangular slotted self similar antenna. Circuits and Systems, 07(06), 859–876. https://doi.org/10.4236/cs.2016.76074.CrossRefGoogle Scholar
- 2.Arand, B. A., & Bazrkar, A. (2015). Gain enhancement of a tetra-band square-loop patch antenna using an AMCPEC substrate and a superstrate. Wireless Personal Communications, 84(1), 87–97. https://doi.org/10.1007/s11277-015-2595-8.CrossRefGoogle Scholar
- 3.Blanchard, R., Aoust, G., Genevet, P., Yu, N., Kats, M. A., Gaburro, Z., et al. (2012). Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Physical Review B, 85(15), 155457. https://doi.org/10.1103/PhysRevB.85.155457.CrossRefGoogle Scholar
- 4.Elek, F., Abhari, R., & Eleftheriades, G. (2005). A uni-directional ring-slot antenna achieved by using an electromagnetic band-gap surface. IEEE Transactions on Antennas and Propagation, 53(1), 181–190. https://doi.org/10.1109/TAP.2004.840533.CrossRefGoogle Scholar
- 5.Yang, F., & Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation, 51(10), 2936–2946. https://doi.org/10.1109/TAP.2003.817983.CrossRefGoogle Scholar
- 6.Feresidis, A., Goussetis, G., Wang, S., & Vardaxoglou, J. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation, 53(1), 209–215. https://doi.org/10.1109/TAP.2004.840528.CrossRefGoogle Scholar
- 7.Howell, J. Q. (1975). Microstrip antennas. IEEE Transactions on Antennas and Propagation, 23(1), 90–93. https://doi.org/10.1109/TAP.1975.1141009.CrossRefGoogle Scholar
- 8.Huang, C. Y., Wu, J. Y., Yang, C. F., & Wong, K. L. (1998). Gain-enhanced compact broadband microstrip antenna. Electronics Letters, 34(2), 138–139.CrossRefGoogle Scholar
- 9.Yang, H. Y., & Alexopoulos, N. G. (1987). Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Transactions on Antennas and Propagation, 35(7), 860–863. https://doi.org/10.1109/TAP.1987.1144186.CrossRefGoogle Scholar
- 10.Joubert, J., Vardaxoglou, J. C., Whittow, W. G., & Odendaal, J. W. (2012). CPW-fed cavity-backed slot radiator loaded with an AMC reflector. IEEE Transactions on Antennas and Propagation, 60(2), 735–742. https://doi.org/10.1109/TAP.2011.2173152.CrossRefGoogle Scholar
- 11.Khaleel, H. R., Abbosh, A. I., Al-rizzo, H. M., & Rucker, D. G. (2013). Flexible and compact AMC based antenna for telemedicine applications. IEEE Transactions on Antennas and Propagation, 61(2), 524–531. https://doi.org/10.1109/TAP.2012.2223449.CrossRefGoogle Scholar
- 12.Khattak, M. K., Kahng, S., Yoo, S. W., Andujar, A., & Anguera, J. (2016). Design of metasurface-backed printed dipoles. In 2016 10th European conference on antennas and propagation (EuCAP), (pp. 1–4). IEEE.Google Scholar
- 13.Lee, S., Kim, N., Shin, Y. J., & Jang, J. D. (2012). Study on reduction of specific absorption rate of 2.4 GHz dipole antenna by using novel artificial magnetic conductor’s reflector. In 2012 Asia–Pacific microwave conference proceedings (APMC), (pp. 592–594). IEEE.Google Scholar
- 14.Li, G., Zhai, H., Li, L., Liang, C., Yu, R., & Liu, S. (2015). AMC-loaded wideband base station antenna for indoor access point in MIMO system. IEEE Transactions on Antennas and Propagation, 63(2), 525–533. https://doi.org/10.1109/TAP.2014.2378316.CrossRefGoogle Scholar
- 15.Li, L., Wu, Z., Li, K., Yu, S., Wang, X., Li, T., et al. (2014). Frequency-reconfigurable quasi-Sierpinski antenna integrating with dual-band high-impedance surface. IEEE Transactions on Antennas and Propagation, 62(9), 4459–4467. https://doi.org/10.1109/TAP.2014.2331992.CrossRefMATHGoogle Scholar
- 16.Li, Q., Feresidis, A. P., Mavridou, M., & Hall, P. S. (2015). Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles. IEEE Transactions on Antennas and Propagation, 63(3), 1168–1171. https://doi.org/10.1109/TAP.2014.2387871.MathSciNetCrossRefMATHGoogle Scholar
- 17.Yang, L., Fan, M., Chen, F., She, J., & Feng, Z. (2005). A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 53(1), 183–190. https://doi.org/10.1109/TMTT.2004.839322.CrossRefGoogle Scholar
- 18.de Maagt, P., Conchillo, B. A., Minelli, L., Ederra, I., Gonzalo, R., & Reynolds, A. (2002). Photonic bandgap antennas and components for microwave and (sub) millimetre wave applications. TIJDSCHRIFT-NERG, 67, 95–99.Google Scholar
- 19.Maruyama, S., & Fukusako, T. (2014). An interpretative study on circularly polarized patch antenna using artificial ground structure. IEEE Transactions on Antennas and Propagation, 62(11), 5919–5924. https://doi.org/10.1109/TAP.2014.2357431.MathSciNetCrossRefMATHGoogle Scholar
- 20.Richards, W., Lo, Y., & Harrison, D. (1981). An improved theory for microstrip antennas and applications. IEEE Transactions on Antennas and Propagation, 29(1), 38–46.CrossRefGoogle Scholar
- 21.Sievenpiper, D., Zhang, L., Broas, R. F., Alexopolous, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059–2074.CrossRefGoogle Scholar
- 22.Yang, W., Che, W., & Wang, H. (2013). High-gain design of a patch antenna using stub-loaded artificial magnetic conductor. IEEE Antennas and Wireless Propagation Letters, 12, 1172–1175. https://doi.org/10.1109/LAWP.2013.2280576.CrossRefGoogle Scholar
- 23.Yang, W., Tam, K. W., Choi, W. W., Che, W., & Hui, H. T. (2014). Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna. IEEE Transactions on Antennas and Propagation, 62(12), 6206–6216. https://doi.org/10.1109/TAP.2014.2361130.MathSciNetCrossRefMATHGoogle Scholar
- 24.Yousefi, L., Mohajer-Iravani, B., & Ramahi, O. M. (2007). Enhanced bandwidth artificial magnetic ground plane for low-profile antennas. Antennas and Wireless Propagation Letters, 6(11), 289–292. https://doi.org/10.1109/LAWP.2007.895282.CrossRefGoogle Scholar
- 25.Zhang, Y. P., Hwang, Y., & Zheng, G. (1997). A gain enhanced probe-fed microstrip patch antenna of very high permittivity. Microwave and Optical Technology Letters, 15(2), 89–91.CrossRefGoogle Scholar
- 26.Lo, Y. T, Solomon, D., & Richards, W. E. (1979). Theory and experiment on microstrip antennas. IEEE Transactions on Antennas and Propagation, 27(2), 137–145. https://doi.org/10.1109/TAP.1979.1142057.CrossRefGoogle Scholar