Advertisement

Wireless Personal Communications

, Volume 101, Issue 3, pp 1221–1232 | Cite as

Angled Split-Ring Artificial Magnetic Conductor for Gain Enhancement in Microstrip Patch Antenna for Wireless Applications

  • Josephine Pon Gloria Jeyaraj
  • Anand Swaminathan
Article
  • 64 Downloads

Abstract

A multiband rectangular microstrip patch antenna integrated with angled split- ring artificial magnetic conducting (AMC) structure is proposed. In order to achieve high gain, directivity and radiation efficiency, an \(3\times 2\) array of proposed angled split-ring patches which has multiple in-phase reflection phase characteristics at S-band (2–4 GHz) is presented as a reflector. A rectangular microstrip patch antenna integrated with the proposed angled split-ring AMC is fabricated, tested and its parameters are compared with the microstrip patch antenna backed with a flat metal sheet, and microstrip patch antenna integrated with conventional split-ring AMC structure. The presence of high scattered field amplitude between the angled arms lead to improved radiation characteristics and make the antenna more suitable for real-time wireless applications. The antenna attains 2.138 dBi increment in gain and 1.87 dBi increment in directivity when it is backed with the proposed angled split-ring artificial magnetic conducting structure instead of a flat metal sheet. A good pact is obtained between the simulated and the measured results.

Keywords

Artificial magnetic conductor High impedance Conventional split-ring AMC Angled split-ring AMC Field amplitude 

Notes

References

  1. 1.
    Anand, S., & Gloria, J. J. P. (2016). RF MEMS based reconfigurable rectangular slotted self similar antenna. Circuits and Systems, 07(06), 859–876.  https://doi.org/10.4236/cs.2016.76074.CrossRefGoogle Scholar
  2. 2.
    Arand, B. A., & Bazrkar, A. (2015). Gain enhancement of a tetra-band square-loop patch antenna using an AMCPEC substrate and a superstrate. Wireless Personal Communications, 84(1), 87–97.  https://doi.org/10.1007/s11277-015-2595-8.CrossRefGoogle Scholar
  3. 3.
    Blanchard, R., Aoust, G., Genevet, P., Yu, N., Kats, M. A., Gaburro, Z., et al. (2012). Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Physical Review B, 85(15), 155457.  https://doi.org/10.1103/PhysRevB.85.155457.CrossRefGoogle Scholar
  4. 4.
    Elek, F., Abhari, R., & Eleftheriades, G. (2005). A uni-directional ring-slot antenna achieved by using an electromagnetic band-gap surface. IEEE Transactions on Antennas and Propagation, 53(1), 181–190.  https://doi.org/10.1109/TAP.2004.840533.CrossRefGoogle Scholar
  5. 5.
    Yang, F., & Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation, 51(10), 2936–2946.  https://doi.org/10.1109/TAP.2003.817983.CrossRefGoogle Scholar
  6. 6.
    Feresidis, A., Goussetis, G., Wang, S., & Vardaxoglou, J. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation, 53(1), 209–215.  https://doi.org/10.1109/TAP.2004.840528.CrossRefGoogle Scholar
  7. 7.
    Howell, J. Q. (1975). Microstrip antennas. IEEE Transactions on Antennas and Propagation, 23(1), 90–93.  https://doi.org/10.1109/TAP.1975.1141009.CrossRefGoogle Scholar
  8. 8.
    Huang, C. Y., Wu, J. Y., Yang, C. F., & Wong, K. L. (1998). Gain-enhanced compact broadband microstrip antenna. Electronics Letters, 34(2), 138–139.CrossRefGoogle Scholar
  9. 9.
    Yang, H. Y., & Alexopoulos, N. G. (1987). Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Transactions on Antennas and Propagation, 35(7), 860–863.  https://doi.org/10.1109/TAP.1987.1144186.CrossRefGoogle Scholar
  10. 10.
    Joubert, J., Vardaxoglou, J. C., Whittow, W. G., & Odendaal, J. W. (2012). CPW-fed cavity-backed slot radiator loaded with an AMC reflector. IEEE Transactions on Antennas and Propagation, 60(2), 735–742.  https://doi.org/10.1109/TAP.2011.2173152.CrossRefGoogle Scholar
  11. 11.
    Khaleel, H. R., Abbosh, A. I., Al-rizzo, H. M., & Rucker, D. G. (2013). Flexible and compact AMC based antenna for telemedicine applications. IEEE Transactions on Antennas and Propagation, 61(2), 524–531.  https://doi.org/10.1109/TAP.2012.2223449.CrossRefGoogle Scholar
  12. 12.
    Khattak, M. K., Kahng, S., Yoo, S. W., Andujar, A., & Anguera, J. (2016). Design of metasurface-backed printed dipoles. In 2016 10th European conference on antennas and propagation (EuCAP), (pp. 1–4). IEEE.Google Scholar
  13. 13.
    Lee, S., Kim, N., Shin, Y. J., & Jang, J. D. (2012). Study on reduction of specific absorption rate of 2.4 GHz dipole antenna by using novel artificial magnetic conductor’s reflector. In 2012 Asia–Pacific microwave conference proceedings (APMC), (pp. 592–594). IEEE.Google Scholar
  14. 14.
    Li, G., Zhai, H., Li, L., Liang, C., Yu, R., & Liu, S. (2015). AMC-loaded wideband base station antenna for indoor access point in MIMO system. IEEE Transactions on Antennas and Propagation, 63(2), 525–533.  https://doi.org/10.1109/TAP.2014.2378316.CrossRefGoogle Scholar
  15. 15.
    Li, L., Wu, Z., Li, K., Yu, S., Wang, X., Li, T., et al. (2014). Frequency-reconfigurable quasi-Sierpinski antenna integrating with dual-band high-impedance surface. IEEE Transactions on Antennas and Propagation, 62(9), 4459–4467.  https://doi.org/10.1109/TAP.2014.2331992.CrossRefzbMATHGoogle Scholar
  16. 16.
    Li, Q., Feresidis, A. P., Mavridou, M., & Hall, P. S. (2015). Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles. IEEE Transactions on Antennas and Propagation, 63(3), 1168–1171.  https://doi.org/10.1109/TAP.2014.2387871.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yang, L., Fan, M., Chen, F., She, J., & Feng, Z. (2005). A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 53(1), 183–190.  https://doi.org/10.1109/TMTT.2004.839322.CrossRefGoogle Scholar
  18. 18.
    de Maagt, P., Conchillo, B. A., Minelli, L., Ederra, I., Gonzalo, R., & Reynolds, A. (2002). Photonic bandgap antennas and components for microwave and (sub) millimetre wave applications. TIJDSCHRIFT-NERG, 67, 95–99.Google Scholar
  19. 19.
    Maruyama, S., & Fukusako, T. (2014). An interpretative study on circularly polarized patch antenna using artificial ground structure. IEEE Transactions on Antennas and Propagation, 62(11), 5919–5924.  https://doi.org/10.1109/TAP.2014.2357431.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Richards, W., Lo, Y., & Harrison, D. (1981). An improved theory for microstrip antennas and applications. IEEE Transactions on Antennas and Propagation, 29(1), 38–46.CrossRefGoogle Scholar
  21. 21.
    Sievenpiper, D., Zhang, L., Broas, R. F., Alexopolous, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059–2074.CrossRefGoogle Scholar
  22. 22.
    Yang, W., Che, W., & Wang, H. (2013). High-gain design of a patch antenna using stub-loaded artificial magnetic conductor. IEEE Antennas and Wireless Propagation Letters, 12, 1172–1175.  https://doi.org/10.1109/LAWP.2013.2280576.CrossRefGoogle Scholar
  23. 23.
    Yang, W., Tam, K. W., Choi, W. W., Che, W., & Hui, H. T. (2014). Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna. IEEE Transactions on Antennas and Propagation, 62(12), 6206–6216.  https://doi.org/10.1109/TAP.2014.2361130.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yousefi, L., Mohajer-Iravani, B., & Ramahi, O. M. (2007). Enhanced bandwidth artificial magnetic ground plane for low-profile antennas. Antennas and Wireless Propagation Letters, 6(11), 289–292.  https://doi.org/10.1109/LAWP.2007.895282.CrossRefGoogle Scholar
  25. 25.
    Zhang, Y. P., Hwang, Y., & Zheng, G. (1997). A gain enhanced probe-fed microstrip patch antenna of very high permittivity. Microwave and Optical Technology Letters, 15(2), 89–91.CrossRefGoogle Scholar
  26. 26.
    Lo, Y. T, Solomon, D., & Richards, W. E. (1979). Theory and experiment on microstrip antennas. IEEE Transactions on Antennas and Propagation, 27(2), 137–145.  https://doi.org/10.1109/TAP.1979.1142057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mepco Schlenk Engineering CollegeSivakasiIndia

Personalised recommendations