Blind Equalization Algorithm for Different Eigenvalue Spread Channels

Article
  • 3 Downloads

Abstract

The performance of blind equalization algorithm is closely related to the characteristics of the channel. Eigenvalue spread of the channel can reflect the influence of the channel on the input signal. The paper presents a method to distinguish eigenvalue spread of the wireless channel by the correlation coefficient of the input vector. For channels with different eigenvalue spread, based on the consideration of the complexity and the performance, different blind equalization algorithms are chosen. At the same time a decorrelation blind equalization algorithm is proposed. Simulations verify the effectiveness of the proposed algorithms.

Keywords

Blind equalization Correlation coefficient Eigenvalue spread MCMA SWA 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61571340 and the program of Introducing Talents of Discipline to Universities under Granted B0803.

References

  1. 1.
    Benveniste, A., & Goursat, M. (1980). Robust identification of non-minimum phase system: Blind adjustment of a linear equalizer in data communication. IEEE Transactions on Automatic Control, 25, 385–399.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Shalvi, O., & Weinstein, E. (1990). New criteria for blind deconvolution of nonminimum phase systems (channels). IEEE Transactions on Information Theory, 42, 1145–1156.MATHGoogle Scholar
  3. 3.
    Haykin, S. (1994). Blind deconvolution. Englewood Cliffs: Prentice Hall.Google Scholar
  4. 4.
    Ding, Z., & Li, Y. (2001). Blind equalization and identification. New York: Marcel Dekker Inc.Google Scholar
  5. 5.
    Miranda, M. D., Silva, M., & Nascimento, V. H. (2008). Avoiding divergence in the Shalvi–Weinstein algorithm. IEEE Transactions on Signal Processing, 56(11), 5403–5413.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Haykin, S. (2013). Adaptive filter theory (5th ed.). London: Pearson Publisher.MATHGoogle Scholar
  7. 7.
    Bellini, S. (1986). Bussgang techniques for blind equalization. In Proceedings of IEEEGLOBECOM (pp. 1634–1640).Google Scholar
  8. 8.
    Godard, D. (1980). Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions in Communications, 28(11), 1867–1875.CrossRefGoogle Scholar
  9. 9.
    Li, X.-L., & Zhang, X.-D. (2006). A family of generalized constant modulus algorithms for blind equalization. IEEE Transactions in Communications, 54(11), 1913–1917.CrossRefGoogle Scholar
  10. 10.
    Abrar, S., & Nandi, A. K. (2010). Blind equalization of square-QAM signals: A multimodulus approach. IEEE Transactions in Communications, 58(6), 1674–1685.CrossRefGoogle Scholar
  11. 11.
    Yang, J., Werner, J.-J., & Dumont, G. A. (2002). The multimodulus blind equalization and its generalized algorithms. IEEE Journal on Selected Areas in Communications, 20(5), 997–1015.CrossRefGoogle Scholar
  12. 12.
    Mendes Filho, J., Miranda, M. D., & Silva, M. T. M. (2012). A regional multimodulus algorithm for blind equalization of QAM signals: Introduction and steady-state analysis. Signal Processing, 92, 2643–2656.CrossRefGoogle Scholar
  13. 13.
    Azim, A. W., Abrar, S., Zerguine, A., & Nandi, A. K. (2015). Steady-state performance of multimodulus blind equalizers. Signal Processing, 108, 509–520.CrossRefGoogle Scholar
  14. 14.
    Fki, S., Messai, M., Aïssa-El-Bey, A., & Chonavel, T. (2014). Blind equalization based on pdf fitting and convergence analysis. Signal Processing, 101, 266–277.CrossRefGoogle Scholar
  15. 15.
    Shalvi, O., & Weinstein, E. (1993). Super-exponential methods for blind deconvolution. IEEE Transactions on Information Theory, 39(2), 504–519.CrossRefMATHGoogle Scholar
  16. 16.
    Silva, M. T. M., & Miranda, M. D. (2004). Tracking issues of some blind equalization algorithms. IEEE Signal Processing Letters, 11(9), 760–763.CrossRefGoogle Scholar
  17. 17.
    Godard, D. (1980). Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications, 28(11), 1867–1875.CrossRefGoogle Scholar
  18. 18.
    Treichler, J., & Agee, B. (1983). A new approach to multipath correction of constant modulus signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 31(2), 459–472.CrossRefGoogle Scholar
  19. 19.
    Johnson, R., Jr., Schniter, P., Endres, T., Behm, J., Brown, D., & Casas, R. (1998). Blind equalization using the constant modulus criterion: A review. Proceedings of the IEEE, 86(10), 1927–1950.CrossRefGoogle Scholar
  20. 20.
    Yuan, J.-T., & Lin, T.-C. (2010). Equalization and carrier phase recovery of CMA and MMA in blind adaptive receivers. IEEE Transactions on Signal Processing, 58(6), 3206–3217.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Doherty, J. F., & Porayath, R. (1997). A robust echo canceler for acoustic environments. IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, 44(5), 389–396.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yongjun Sun
    • 1
  • Fanli Wang
    • 1
  • Cuiyuan Jia
    • 2
  • Zujun Liu
    • 1
  1. 1.Xidian UniversityXi’anChina
  2. 2.Shanghai Engineering Center for MicrosatellitesShanghaiChina

Personalised recommendations