Advertisement

Wireless Personal Communications

, Volume 101, Issue 2, pp 897–914 | Cite as

Interference Cancellation in CDMA Systems Employing Complementary Codes Under Rician Fading Channels

  • D. Judson
  • Vidhyacharan Bhaskar
Article
  • 26 Downloads

Abstract

The ideal correlation properties of single user code division multiple access (CDMA) systems with complementary codes (CC) are lost by multiple access interference and near–far effects in downlink frequency selective fading channels. This severity in interference has motivated to develop ways to overcome the threats with suitable suboptimal interference cancellation schemes. In this paper, we propose successive interference cancellation (SIC) for downlink CDMA systems with CC to improve the system capacity and reduce error rate under near–far situations. Theoretical study and extensive simulations were conducted to verify the effectiveness of proposed SIC under frequency selective Rician fading channels in achieving frequency diversity gain, close to theoretical lower bound in complementary coded CDMA (CC-CDMA) systems.

Keywords

Successive interference cancellation (SIC) Parallel interference cancellation (PIC) Complemetary coded code division multiple access (CC-CDMA) systems Near–far effects Minimum mean square error combining (MMSEC) 

Notes

References

  1. 1.
    Sari, H., Karam, G., & Jeanclaude, I. (1995). Transmission techniques for digital terrestrial TV broadcasting. IEEE Communication Magazine, 33(2), 100–109.CrossRefGoogle Scholar
  2. 2.
    Tseng, C. C., & Liu, C. L. (1995). Complementary sets of sequences. IEEE Wireless Communications, 18(5), 644–652.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Golay, M. J. E. (1961). Complementary series. IRE Transactions on Information theory, 72(2), 82–87.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, H. H., Yeh, J. F., & Suehiro, N. (2001). A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications. IEEE Communication Magazine, 39(10), 126–135.CrossRefGoogle Scholar
  5. 5.
    Chen, H. H., Chiu, H. W., & Guizani, M. (2006). Orthogonal complementary codes for interference free CDMA technologies. IEEE Wireless Communications, 13(1), 68–79.CrossRefGoogle Scholar
  6. 6.
    Chen, H. H. (2007). The next generation CDMA technologies. Hoboken: Wiley.CrossRefGoogle Scholar
  7. 7.
    Chen, H. H., Chu, S. W., Kuroyanagi, N., & Vinck, A. J. H. (2007). An algebraic approach to generate a superset of perfect complementary codes for interference-free CDMA. Wireless Communications and Mobile Computing, 7(5), 605–622.CrossRefGoogle Scholar
  8. 8.
    Meng, W. H., Sun, S. Y., & Chen, H. H. (2013). Multiuser interference cancellation in complementary coded CDMA with diversity gain. IEEE Wireless Communication Letters, 2(3), 303–306.CrossRefGoogle Scholar
  9. 9.
    Liu, Z., Guan, Y. Z., & Chen, H. H. (2015). Fractional delay resilient receiver design for interference free MC-CDMA communication based on complete complementary codes. IEEE Transactions on Wireless Communications, 4(3), 1226–1236.CrossRefGoogle Scholar
  10. 10.
    Mohammed, M., & Buehrer, M. (2008). The effects of ordering criteria in linear successive interference cancellation in CDMA system. IEEE Transaction on Wireless Communications, 7(11), 4128–4132.CrossRefGoogle Scholar
  11. 11.
    Judson, D., & Albert Raj, A. (2016). Performance of multicarrier complementary-coded CDMA under frequency-selective Nakagami-m fading channels. Eurasip Journal on Wireless Communications & Networking.  https://doi.org/10.1186/s13638-016-0563-y.Google Scholar
  12. 12.
    Sun, S. Y., Hu, Y. L., Chen, H. H., & Meng, W. X. (2016). Joint pre-equalization and adaptive combining for CC-CDMA systems over asynchronous frequency-selective fading channels. IEEE Transactions on Vehicular Technology, 65(7), 5175–5184.CrossRefGoogle Scholar
  13. 13.
    Judson, D., & Bhaskar, V. (2017). Error rate analysis of SIMO-CDMA with complementary codes under multipath fading channels. Wireless Personal Communications.  https://doi.org/10.1007/s11277-017-4938-0.Google Scholar
  14. 14.
    Benvenuto, N., & Bisaglia, P. (2003). Parallel and successive interference cancellation for MC-CDMA and their near–far resistance. In Proceedings of IEEE Vehicular Technology Conference, pp. 1045–1049.Google Scholar
  15. 15.
    Fang, L., & Milstein, L. B. (2000). Successive interference cancellation for multicarrier DS/CDMA. IEEE Transactions on Communications, 48(9), 1530–1540.CrossRefGoogle Scholar
  16. 16.
    Miridakis, N. I., & Vergados, D. D. (2013). A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems. IEEE Communications Surveys and Tutorials, 15(1), 312–335.CrossRefGoogle Scholar
  17. 17.
    Andrews, J., & Meng, T. (2003). Optimum power control for successive interference cancellation with imperfect channel estimation. IEEE Transactions on Wireless Communications, 2(3), 375–383.CrossRefGoogle Scholar
  18. 18.
    Hossein-Abed, H. M., Nezambadi-Pour, H., Moghadam, D. A., & Khademi, M. (2013). Joint detection, channel estimation and interference cancellation in downlink MC-CDMA communication systems using complex-valued multilayer neural networks. Annals of Telecommunications, 68(7), 467–476.CrossRefGoogle Scholar
  19. 19.
    Proakis, J. G. (2001). Digital communication (4th ed.). New York: McGraw-Hill.Google Scholar
  20. 20.
    Judson, D., Bhaskar, V., & Selvaraj, K. (2017). Pre-equalization schemes for MIMO CC-CDMA systems over frequency-selective fading channels. Wireless Personal Communications.  https://doi.org/10.1007/s11277-017-4936-2.Google Scholar
  21. 21.
    Chen, H. H., & Chiu, H. W. (2004). Design of perfect complementary codes to implement interference-free CDMA systems. Proceedings of IEEE GLOBECOM, 2, 1096–1100.Google Scholar
  22. 22.
    Verdu, S. (1998). Multiuser detection. UK: Cambridge University Press.zbMATHGoogle Scholar
  23. 23.
    Madkour, M. F., Gupta, S. C., & Wang, Y. P. E. (2002). Successive interference cancellation algorithms for downlink W-CDMA communication. IEEE Transactions on Wireless Communications, 11(1), 169–177.CrossRefGoogle Scholar
  24. 24.
    Saxena, J., Rai, C. S., & Bansal, P. K. (2007). Near–far resistant ICA based detector for DS-CDMA systems in the downlink. Wireless Personal Communications, 43(2), 341–353.CrossRefGoogle Scholar
  25. 25.
    Wang, C., Au, E., Munch, R., Mow, W. H., Cheng, R., & Lau, V. (2007). On the performance of MIMO zero-forcing receiver in the presence of channel estimation error. IEEE Transactions on Wireless Communications, 16(3), 805–810.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSt. Xavier’s Catholic College of EngineeringChunkankadaiIndia
  2. 2.Department of Electrical and Computer EngineeringSan Francisco State UniversitySan FranciscoUSA

Personalised recommendations