Advertisement

Wireless Personal Communications

, Volume 101, Issue 2, pp 601–617 | Cite as

MIMO GS OVSF/OFDM Based Underwater Acoustic Multimedia Communication Scheme

  • Chin-Feng Lin
  • Hsiu-Hung Lai
  • Shun-Hsyung Chang
Article

Abstract

An underwater acoustic multimedia communication (UWAMC) system is proposed with 2400 transmission modes according to time-varying multipath underwater acoustic (UWA) channel conditions. The orthogonal variable spreading factor (OVSF) scheme and Gold sequence (GS) scramble code are integrated into multi-input multi-output UWAMC system based on orthogonal frequency-division multiplexing to achieve the quality of service of multimedia transmission in the UWA channel. Binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) adaptive modulation, direct mapping (DM) or space–time block code (STBC) transmission strategies, convolution channel code with rate 1/2 and 1/3, and a power assignment mechanism were adopted in the proposed system. Simulation results show that the bit error rate (BER) and power saving ratio (PSR) performance of the STBC strategy with transmission diversity is superior to that of the DM strategy without transmission diversity, and the performance of the BERs and PSRs of the transmission scheme with the GS scramble code surpasses that of the scheme without the code. The performance of the BERs and PSRs of BPSK modulation with a channel code rate of 1/3 is better than that of BPSK modulation with a channel code rate of 1/2, and the performances of BERs and PSRs of BPSK modulation with a channel code rate of 1/3 are better than that of QPSK modulation with a channel code rate of 1/3. As the length of the OVSF codes increases, the UWAMC system’s BERs decrease, and its PSRs increase. The UWAMC system can achieve either maximum transmission speed or maximum transmission power efficiency.

Keywords

Underwater acoustic multimedia communication Orthogonal variable spreading factor Gold sequence Space–time block code Bit error rates Power saving ratios 

Notes

Acknowledgements

The authors acknowledge the support of the grant form Ministry of Science and Technology of Taiwan, NSC 99-2923-E-022-001-MY3, MOST-105-2923-E-022-001-MY3, and the valuable comments of the reviewers.

References

  1. 1.
    Quazi, A. H., & Konrad, W. L. (1982). Underwater acoustic communications. IEEE Communication Magazine, 20, 24–30.CrossRefGoogle Scholar
  2. 2.
    Baggeroer, A. B. (1984). Acoustic telemetry-an overview. IEEE Journal Oceanic Engineering, OE9(4), 229–235.CrossRefGoogle Scholar
  3. 3.
    Stojanovic, M. (1996). Recent advances in high speed underwater acoustic communications. IEEE Journal Oceanic Engineering, 21(2), 125–136.CrossRefGoogle Scholar
  4. 4.
    Sozer, E. M., Stojanovic, M., & Proakis, J. G. (2000). Underwater acoustic networks. IEEE Journal Oceanic Engineering, 25(1), 72–83.CrossRefGoogle Scholar
  5. 5.
    Kilfoyle, D. B., & Baggeroer, A. B. (2000). The state of the art in underwater acoustic telemetry. IEEE Journal Oceanic Engineering, 25(1), 4–27.CrossRefGoogle Scholar
  6. 6.
    Proakis, Sozer E. M., Rice, J. A., & Stojanovic, M. (2001). Shallow water acoustic networks. IEEE Communication Magazine, 39(11), 114–119.CrossRefGoogle Scholar
  7. 7.
    Chiu, L. Y. S. (邱永盛), Chang, A. (張元櫻), & Chen, C. F. (陳琪芳). (2006). Reviews and aspects of underwater acoustic communication (水下通訊系統回顧與展望,海洋及水). Journal of Ocean and Underwater Technology (海洋及水下科技季刊 ), 16(1), 22–39.Google Scholar
  8. 8.
    Zhou, G., Shim, T., & Shim, T. (2007). Adaptive transmission technique in underwater acoustic wireless communication. In L. Kang, Y. Liu, & S. Zeng (Eds.), LNCS (Vol. 4684, pp. 268–276). Berlin: Springer.Google Scholar
  9. 9.
    Parrish, N., Tracy, L., Roy, S., Arabshahi, P., & Fox, W. L. J. (2008). System design considerations for undersea networks: Link and multiple access protocols. IEEE Journal on Selected Areas in Communications, 26(9), 1720–1730.CrossRefGoogle Scholar
  10. 10.
    Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84–89.CrossRefGoogle Scholar
  11. 11.
    Singer, A. C., Nelson, J. K., & Kozat, S. S. (2009). Signal processing for underwater acoustic communications. IEEE Communications Magazine, 47(1), 90–96.CrossRefGoogle Scholar
  12. 12.
    Lin, C. F. (林進豐), Chang, S. H. (張順雄), & Invan, A. P. (2014). Advanced underwater communication technology (先進水下通訊技術). Journal of Ocean and Underwater Technology (海洋及水下科技季刊), 24(3), 27–33.Google Scholar
  13. 13.
    Poncela, J., Aguayo, M. C., & Otero, P. (2012). Wireless underwater communications. Wireless Personal Communications, 64, 547–560.CrossRefGoogle Scholar
  14. 14.
    Song, H. C. (2016). An overview of underwater time-reversal communication. IEEE Journal of Oceanic Engineering, 41(3), 644–655.CrossRefGoogle Scholar
  15. 15.
    Benson, B., Li, Y., Faunce, B., et al. (2010). Design of a low-cost underwater acoustic modem. IEEE Embedded Systems Letters, 2(3), 58–61.CrossRefGoogle Scholar
  16. 16.
    Wu, L., Trezzo, J., Mirza, D., et al. (2012). Designing an adaptive acoustic modem for underwater sensor networks. IEEE Embedded Systems Letters, 4(1), 1–4.CrossRefGoogle Scholar
  17. 17.
    Sendra, S., Lloret, J., Jimenez, J. M., & Parra, L. (2016). Underwater acoustic modems. IEEE Sensors Journal, 16(11), 4063–4071.CrossRefGoogle Scholar
  18. 18.
    Cheng, X., Cheng, X., Yang, L., & Cheng, X. (2016). Cooperative OFDM underwater acoustic communications (pp. 1–12). Switzerland: Springer.Google Scholar
  19. 19.
    Nam, H., & An, S. (2011). Low-power based coherent acoustic modem for emerging underwater acoustic sensor networks. Wireless Personal Communications, 57, 291–309.CrossRefGoogle Scholar
  20. 20.
    Clemente, M. C., Ruiz-Vega, F., Otero, P., et al. (2014). Adaptive turbo coded modulation for shallow underwater acoustic communications. Wireless Personal Communications, 78, 1231–1248.CrossRefGoogle Scholar
  21. 21.
    Diamant, R., & Lampe, L. (2015). Adaptive error-correction coding scheme for underwater acoustic communication networks. IEEE Journal Oceanic Engineering, 40(1), 104–114.CrossRefGoogle Scholar
  22. 22.
    Qu, F., Wang, Z., & Yang, L. (2017). Differential orthogonal space-time block coding modulation for time-variant underwater acoustic channels. IEEE Journal Oceanic Engineering, 42(1), 188–198.Google Scholar
  23. 23.
    Dol, H. S., Casari, P., Zwan T., & Otnes, R. (2017). Software-defined underwater acoustic modems: Historical review and the NILUS approach. IEEE Journal Oceanic Engineering, 42(3), 722–737.CrossRefGoogle Scholar
  24. 24.
    Konstantakos, D. P., Adams, A. E., & Sharif, B. S. (2004). Multicarrier code division multiple access (MC-CDMA) technique for underwater acoustic communication networks using short spreading sequences. IEE Proceedings Radar Sonar and Navigation, 151(4), 231–239.CrossRefGoogle Scholar
  25. 25.
    Tsimenidis, C. C., Hinton, O. R., Adams, A. E., & Sharif, B. S. (2001). Underwater acoustic receiver employing direct-sequence spread spectrum and spatial diversity combining for shallow-water multiaccess networking. IEEE Journal of Oceanic Engineering, 26(4), 594–603.CrossRefGoogle Scholar
  26. 26.
    He, C., Huang, J., & Ding, Z. (2009). A variable-rate spread-spectrum system for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 34(4), 624–633.CrossRefGoogle Scholar
  27. 27.
    Lin, C. F., Chen, J. Y., Yu, Y. J., Yan, J. T., & Chang, S. H. (2010). Direct mapping OVSF-based transmission scheme for underwater acoustic multimedia communication. Journal of Marine Science and Technology, 18(3), 413–418.Google Scholar
  28. 28.
    Huang, J., Zhou, S., & Willett, P. (2008). Nonbinary LDPC coding for multicarrier underwater acoustic communication. IEEE Journal on Selected Areas in Communications, 26(9), 1684–1696.CrossRefGoogle Scholar
  29. 29.
    Kang, T., & Iltis, R. A. (2008). Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems. IEEE Journal on Selected Areas in Communications, 26(9), 1650–1661.CrossRefGoogle Scholar
  30. 30.
    Hwang, S. J., & Schniter, P. (2008). Efficient multicarrier communication for highly spread underwater acoustic channels. IEEE Journal on Selected Areas in Communications, 26(9), 1674–1683.CrossRefGoogle Scholar
  31. 31.
    Li, B., Huang, J., Zhou, S., Ball, K., Stojanovic, M., Freitag, L., et al. (2009). MIMO-OFDM for high-rate underwater acoustic communications. IEEE Journal of Oceanic Engineering, 34(4), 624–633.CrossRefGoogle Scholar
  32. 32.
    Pelekanakis, K., & Baggeroer, A. B. (2011). Exploiting space–time–frequency diversity with MIMO–OFDM for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 36(4), 502–513.CrossRefGoogle Scholar
  33. 33.
    Lin, C. F., Shih, C. H., Chen, C. P., Leu, S. W., Wu, J. K., Tseng, C. H., et al. (2009). An OFDM-based transmission scheme for underwater acoustic multimedia. WSEAS Transactions on Communications, 3(8), 343–352.Google Scholar
  34. 34.
    Lin, C. F., Chang, S. H., Lee, C. C., Wu, W. C., Chen, W. H., Chang, K. H., et al. (2013). Underwater acoustic multimedia communication based on MIMO OFDM. Wireless Personal Communications, 71, 1231–1245.CrossRefGoogle Scholar
  35. 35.
    Emre, Y., Kandasamy, V., Duman, T. M., Hursky, P., & Roy, S. (2008). Multi-input multi-output OFDM for shallow-water UWA communications. In Acoustics conference (pp. 5334–5338).Google Scholar
  36. 36.
    Radosevic, A., Ahmed, R., Duman, T. M., Proakis, John G., & Stojanovic, M. (2014). Adaptive OFDM modulation for underwater acoustic communications: Design considerations and experimental results. IEEE Journal of Oceanic Engineering, 39(2), 357–370.CrossRefGoogle Scholar
  37. 37.
    Wan, L., Zhou, H., Xu, X., Huang, Y., Zhou, S., Shi, Z., et al. (2015). Adaptive modulation and coding for underwater acoustic OFDM. IEEE Journal of Oceanic Engineering, 40(2), 327–336.CrossRefGoogle Scholar
  38. 38.
    Zakharov, Y. V., & Morozov, A. K. (2015). OFDM transmission without guard interval in fast-varying underwater acoustic channels. IEEE Journal of Oceanic Engineering, 40(1), 144–158.CrossRefGoogle Scholar
  39. 39.
    Zorita, E. V., & Stojanovic, M. (2015). Space-frequency block coding for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 40(2), 303–314.CrossRefGoogle Scholar
  40. 40.
    Kumar, P., & Kumar, P. (2015). A comparative study of spread OFDM with transmit diversity for underwater acoustic communications. Wireless Personal Communications, 83, 69–86.CrossRefGoogle Scholar
  41. 41.
    Kumar, P., & Kumar, P. (2016). Performance evaluation of π/4-DQPSK OFDM over underwater acoustic channels. Wireless Personal Communications, 91, 1137–1152.CrossRefGoogle Scholar
  42. 42.
    Hwang, S. Y, Park, G. Y, Park, H. J, & Jhang, K. S. (2008). An improved implementation method of the gold sequence generator. In IEEE international symposium on consumer electronics. Google Scholar
  43. 43.
    Zhang, J., Zheng, Y. R., et al. (2008). Frequency-domain equalization for single carrier MIMO underwater acoustic communications. In MTS/IEEEOcean’08.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chin-Feng Lin
    • 1
  • Hsiu-Hung Lai
    • 1
  • Shun-Hsyung Chang
    • 2
  1. 1.Department of Electrical EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
  2. 2.Department of Microelectronic EngineeringNational Kaohsiung University of Science and TechnologyKaohsiungTaiwan

Personalised recommendations