Skip to main content

Advertisement

Log in

Proposing a Method for Controlling Congestion in Wireless Sensor Networks Using Comparative Fuzzy Logic

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recent developments and advances on electronics and wireless telecommunications have enabled researchers to design and produce low-power and small sensors with reasonable prices which can be used for various applications. Wireless multimedia sensor networks are a new subset of WSN family which is capable of doing operations such as receiving multimedia information, i.e. video, sound, photo and numerical data from the surrounding environment, processing them and transmitting them. Due to high transmission rate and the explosive feature, the transmission of video flows in WSNs concerned with several challenges. Congestion also leads to the loss of packets and costly retransmission of packets. Consequently, the limited energy of the sensor nodes is wasted. Accordingly, in this paper, using fuzzy logic, a new congestion control method was proposed for these networks. In the proposed method, congestion announcement and control are carried out by using three main parameters, i.e. the remaining energy level of the node, load density and accessible detection bandwidth. The results of evaluations, done via OPNET 11.5, indicated that using the proposed method led to an average delay reduction in packet arrival. Also, less energy of the nodes is consumed and network lifetime is enhanced. Multimedia is used for novel approaches such as the followings: communications, commerce, education, entertainment, personal locator services, advanced health care, control systems, traffic avoidance and execution and in Information Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aghdam, S. M., Khansari, M., Rabiee, H. R., & Salehi, M. (2014). WCCP: A congestion control protocol for wireless multimedia communication in sensor networks. Ad Hoc Networks, 13, 516–534.

    Article  Google Scholar 

  2. Wang, C., Sohraby, K., Lawrence, V., Li, B. & Hu, Y. (2006). Priority-based congestion control in wireless sensor networks. In IEEE International Conference on Sensor Networks, Uubiquitous, and Trustworthy Computing (SUTC 2006) (pp. 22–31). Taichung, Taiwan, IEEE Computer Society.

  3. Yaghmaee, M. H., & Adjeroh, D. A. (2009). Priority-based rate control for service differentiation and congestion control in wireless multimedia sensor networks. Computer Netsworks, 53(11), 1798–1811.

    Article  MATH  Google Scholar 

  4. Chen, S., & Yang, N. (2006). Congestion avoidance based on light weight buffer management in sensor networks. IEEE Transactions on Parallel and Distributed Systems, Special Issue on Localized Communication and Topology Protocols for Ad Hoc Networks, 17, 934–946.

    Article  Google Scholar 

  5. Wan C. Y., Eisenman S. B. & Campbell A. T. (2003) CODA: Congestion detection and avoidance in sensor networks. In The Proceeding of ACM Sensys’03, Los Angeles, California, USA.

  6. Hull, B., Jamieson, K. & Balackrishnan, H. (2004). Mitigatting congestion in wireless sensor networks. In Proceedings of Sensor Systems 04, 2004 (pp. 134–147).

  7. Ee, C. & Bajsys, R. (2004). Congestion control and fairness for many-to-one routing in sensor networks. In Proceedings of ACM Sensor Systems.

  8. Wang, C., Li, B., Sohrabi, K., Daneshmand, M., & Hu, Y. (2007). Upstream congestion control in wireless sensor networks through cross-optimaization. IEEE Journal on Ed Area in Communication, 25(4), 786–795.

    Article  Google Scholar 

  9. Vuran, M. C., & Akyildiz, I. F. (2010). XLP: A cross-layer protocol for efficient communication in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(11), 1578–1591.

    Article  Google Scholar 

  10. Zawodniok, M., & Jagannathan, S. (2007). Predictive congestion control protocol for wireless sensor networks. IEEE Transactions on Wireless Communication, 6(11), 3955–3963.

    Article  Google Scholar 

  11. Adjeroh, D. & Yaghmaee, H. (2008). A new priority based congestion control protocol for wireless multimedia sensor networks. In: International Symposium on A world of Wireless, Mobile and Multimedia Networks, Newport beach, CA, USA (pp. 1–8) June 23–26, 2008.

  12. Huang, R., Fang, Y., Li, S., Yin, X., & Zhou, X. (2009). A fairness-aware congestion control scheme in wireless sensor networks. IEEE Transactions on Vehicular Technology, 58(9), 5225–5234.

    Article  Google Scholar 

  13. Tao, L. Q. & Yu, F. Q. (2010). ECODA: Enhanced congestion detection and avoidance for multiple class of traffic in sensor networks. Transactions on Consumer Electronics, 56(3).

  14. Basaran, C., Kang, K. D., & Mehmet, H. S. (2010). Hop-by-hop congestion control and load balancing in wireless sensor networks. In 2010 IEEE 35th conference on local computer networks (LCN) (pp. 448–455). IEEE.

  15. Akyildiz, I. F., Akan, O. B. & Sankarasubramaniam, Y. (2003). ESRT: Event-to-sink reliable transport in wireless sensor networks. In Proceedings of ACMMobihoc’03, June 1–3, 2003, Annapolis, Maryland.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayesteh Tabatabaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, S., Omrani, M.R. Proposing a Method for Controlling Congestion in Wireless Sensor Networks Using Comparative Fuzzy Logic. Wireless Pers Commun 100, 1459–1476 (2018). https://doi.org/10.1007/s11277-018-5648-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5648-y

Keywords

Navigation