Analysis of Frequency Notch Characteristics in Enhanced-Ultra-Wide-Band Compact Microstrip Patch Antenna

Article
  • 16 Downloads

Abstract

A novel UWB microstrip antenna is proposed for C, X, and Ku bands wireless applications. An impedance bandwidth of 107.7% ranging from 4.5 to 15 GHz is achieved then it is improved to the value of 181.32% ranging from 1.2 to 24.5 GHz. Further, two SRR are embedded to achieve two notch bands at 3.7 and 4.2 GHz for avoiding the interference at these frequencies. Gain of proposed antenna is varying between 2 to 6 dBi within the range of operation. Analysis of SRR is presented and design procedure of antenna as well as notch band is proposed. Analysis is done by Ansoft HFSS which is based on finite element method and simulated results are verified with measured results of fabricated prototypes.

Keywords

Bandwidth enhancement Microstrip antenna Metamaterials Notch band Ultra-wide band (UWB) antenna 

References

  1. 1.
    Gautam, A. K., Yadav, S., & Kanaujia, B. K. (2013). A CPW-fed compact UWB microstrip antenna. IEEE Antennas and Wireless Propagation Letters, 12, 151–154.CrossRefGoogle Scholar
  2. 2.
    Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2014). Analysis and design of Microstrip-line-fed antenna with defected ground structure for Ku band applications. International Journal of Electronics and Communications, 68, 951–957.CrossRefGoogle Scholar
  3. 3.
    Khandelwal, M. K., Kanaujia, B. K., & Gautam, A. K. (2013). Low profile UWB log-periodic dipole antenna for wireless communication with notched band. Microwave and Optical Technology Letters, 55, 2901–2906.CrossRefGoogle Scholar
  4. 4.
    Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2014). Bandwidth enhancement and cross-polarization suppression in ultra-wideband microstrip antenna with defected ground plane. Microwave and Optical Technology Letters, 56, 2141–2146.CrossRefGoogle Scholar
  5. 5.
    Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2005). Study of a printed circular disc monopole antenna for UWB systems. IEEE Transactions on Antennas and Propagation, 53, 3500–3504.CrossRefGoogle Scholar
  6. 6.
    Antoniades, M. A., & Eleftheriades, G. V. (2008). A compact multiband monopole antenna with a defected ground plane. IEEE Antennas and Wireless Propagation Letters, 7, 652–655.CrossRefGoogle Scholar
  7. 7.
    Jan, J. Y., & Su, J. W. (2005). Bandwidth enhancement of a printed wide-slot antenna with a rotated slot. IEEE Transactions on Antennas and Propagation, 53, 2111–2114.CrossRefGoogle Scholar
  8. 8.
    Sung, Y. (2012). Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch. IEEE Transactions on Antennas and Propagation, 60, 1712–1716.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yin, K., & Xu, J. P. (2008). Compact ultra-wideband antenna with dual bandstop characteristic. Electronics Letters, 44, 1–2.CrossRefGoogle Scholar
  10. 10.
    Abdollahvand, M., Dadashzadeh, G., & Mostafa, D. (2010). Compact dual band-notched printed monopole antenna for UWB application. IEEE Antennas and Wireless Propagation Letters, 9, 1148–1151.CrossRefGoogle Scholar
  11. 11.
    Nouri, A., & Dadashzadeh, G. R. (2011). A compact UWB band-notched printed monopole antenna with defected ground structure. IEEE Antennas and Wireless Propagation Letters, 10, 1178–1181.CrossRefGoogle Scholar
  12. 12.
    Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2014). Analysis and design of microstrip-line-fed antenna with defected ground structure for Ku band applications. International Journal of Electronics and Communication, 68, 951–957.CrossRefGoogle Scholar
  13. 13.
    Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2015). Analysis and design of dual band compact stacked microstrip patch antenna with defected ground structure for WLAN/WiMax applications. International Journal of Electronics and Communication, 69, 39–47.CrossRefGoogle Scholar
  14. 14.
    Oli, T., Kumar, R., & Kushwaha, N. (2013). On the design of elliptical shape fractal antenna for UWB applications. Applied Electromagnetics Conference (AEMC)., 18–20, 1–2.Google Scholar
  15. 15.
    Maza, A. R., Cook, B., Jabbour, G., & Shamim, A. (2012). Paper-based inkjet-printed ultrawideband fractal antennas. Microwaves Antennas & Propagation IET., 6, 1366–1373.CrossRefGoogle Scholar
  16. 16.
    Shaker, G., Safieddin, Safavi-Naeini, Sangary, N., & Tentzeris, M. M. (2011). Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates. Antennas and Wireless Propagation Letters IEEE., 10, 111–114.CrossRefGoogle Scholar
  17. 17.
    Osman, M. A. R., Abd Rahim, M. K., Abdullah, M. A., Samsuri, N. A., Zubir, F., & Kamardin, K. (2011). Design, implementation and performance of ultra-wideband textile antenna. Progress In Electromagnetics Research B., 27, 307–325.CrossRefGoogle Scholar
  18. 18.
    Khaleel, H. R., Al-Rizzo, H. M., Rucker, D. G., & Mohan, S. (2012). A compact polyimide-based UWB antenna for flexible electronics. Antennas and Wireless Propagation Letters IEEE., 11, 564–567.CrossRefGoogle Scholar
  19. 19.
    Khandelwal, M. K., Kanaujia, B. K., Kumar, S., & Gautam, A. K. (2017). Miniaturization of DNG metamaterial. Microwave and Optical Technology Letters., 59, 862–865.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringBhagwan Parshuram Institute of TechnologyNew DelhiIndia

Personalised recommendations