Wireless Personal Communications

, Volume 100, Issue 1, pp 47–66 | Cite as

Performance Analysis of Space-Air-Ground Integrated Network (SAGIN) Over an Arbitrarily Correlated Multivariate FSO Channel

  • Isiaka A. Alimi
  • Akeem O. Mufutau
  • António L. Teixeira
  • Paulo P. Monteiro


The space-air-ground integrated network (SAGIN) system interconnect several networks in order to achieve a large network topology that is capable of efficient sharing of global information and resources. Nevertheless, the associated communication facilities between the mobile platforms and air-to-ground links are limited to a low-bit rate radio-based technology. Besides, the huge services to be supported require a high capacity link in order to handle multiple information in parallel and in real-time. The free-space optical (FSO) communication system has inherent features to support the network demands. However, support for drifting in the SAGIN system could be challenging for the FSO line-of-sight links because of the requirement for alignment between the receiver and transmitter modules. Also, the FSO system performance is hindered by the atmospheric turbulence-induced fading. In addition, the unmanned aerial vehicles in the SAGIN system can operate in swarm mode to achieve system diversity in order to alleviate turbulence-induced fading. However, this can lead to channel correlation that can impair the system performance. In this paper, we consider the effect of arbitrarily correlated FSO channel on the system performance. To achieve this, we employ exponential model for modeling the correlations between the apertures. Furthermore, to account for the spatial correlation in the air-to-ground as well as air-to-air communications in the SAGIN system, we consider a multivariate Gamma–Gamma (\(\varGamma \varGamma\)) distribution. The results of the study sufficiently quantify the effects of the atmospheric turbulence-induced fading as well as correlation on the system.


Atmospheric turbulence Correlation Free-space optical (FSO) communication Gamma–Gamma distribution High altitude platforms (HAPs) Positioning Spatial diversity Tracking Unmanned aerial vehicles (UAV) 



This work was supported in part by the Fundaçõo para a Ciência e a Tecnologia under the Ph.D. Grant PD/BD/52590/2014, in part by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework [Project HeatIT with Nr. 017942 (CENTRO-01-0247-FEDER-017942)] and by the FCT/MEC through the national funds under the project, COMPRESS - PTDC/EEI-TEL/7163/2014, in part by the Integrated Programmes “SOCA” (CENTRO-01-0145-FEDER-000010) and “ORCIP” (POCI-01-0145-FEDER- 022141) co-funded by Centro 2020 Program, Portugal 2020, European Union, through the European Regional Development Fund, and in part by the FEDER, through the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework , Project, RETIOT, POCI-01-0145-FEDER-016432.


  1. 1.
    Chlestil, C., Leitgeb, E., Schmitt, N. P., Muhammad, S. S., Zettl, K., & Rehm, W. (2006). Reliable optical wireless links within UAV swarms. In 2006 international conference on transparent optical networks (Vol. 4, pp. 39–42).
  2. 2.
    Wu, Z., Kumar, H., & Davari, A. (2005). Performance evaluation of OFDM transmission in UAV wireless communication. In Proceedings of the thirty-seventh southeastern symposium on system theory, 2005. SSST ’05 (pp. 6–10).
  3. 3.
    Heng, K. H., Liu, N., He, Y., Zhong, W. D., & Cheng, T. H. (2008). Adaptive beam divergence for inter-UAV free space optical communications. In 2008 IEEE PhotonicsGlobal@Singapore (pp. 1–4).
  4. 4.
    Zhou, L., Last, M., Milanovic, V., Kahn, J. M., & Pister, K. S. J. (2003). Two-axis scanning mirror for free-space optical communication between UAVs. In 2003 IEEE/LEOS international conference on optical MEMS (Cat. No.03EX682) (pp. 157–158).
  5. 5.
    Alimi, I., Shahpari, A., Sousa, A., Ferreira, R., Monteiro, P., & Teixeira, A. (2017). Challenges and opportunities of optical wireless communication technologies. In Pinho, P. (ed.), Optical communication technology, InTech, Rijeka, chap 02.
  6. 6.
    Alimi, I. A., Monteiro. P. P., & Teixeira, A. L. (2017). Analysis of multiuser mixed RF/FSO relay networks for performance improvements in cloud computing-based radio access networks (CC-RANs). Optics Communications 402(Supplement C), 653–661.
  7. 7.
    Ghassemlooy, Z., Arnon, S., Uysal, M., Xu, Z., & Cheng, J. (2015). Emerging optical wireless communications-advances and challenges. IEEE Journal on Selected Areas in Communications, 33(9), 1738–1749. Scholar
  8. 8.
    Alimi, I. A., Shahpari, A., Monteiro, P. P., & Teixeira, A. L. (2017). Effects of diversity schemes and correlated channels on owc systems performance. Journal of Modern Optics, 64(21), 2298–2305. Scholar
  9. 9.
    Alimi, I. A., Abdalla, A. M., Rodriguez, J., Monteiro, P. P., & Teixeira, A. L. (2017). Spatial interpolated lookup tables (LUTs) models for ergodic capacity of MIMO FSO systems. IEEE Photonics Technology Letters, 29(7), 583–586. Scholar
  10. 10.
    Alimi, I., Shahpari, A., Ribeiro, V., Sousa, A., Monteiro, P., & Teixeira, A. (2017). Channel characterization and empirical model for ergodic capacity of free-space optical communication link. Optics Communications, 390, 123–129.
  11. 11.
    Chan, V. W. S. (2006). Free-space optical communications. Journal of Lightwave Technology, 24(12), 4750–4762. Scholar
  12. 12.
    Leitgeb, E., Zettl, K., Muhammad, S. S., Schmitt, N., & Rehm, W. (2007). Investigation in free space optical communication links between unmanned aerial vehicles (UAVs). In 2007 9th international conference on transparent optical networks (Vol. 3, pp. 152–155).
  13. 13.
    Muhammad, S. S., Plank, T., Leitgeb, E., Friedl, A., Zettl, K., Javornik, T., & Schmitt, N. (2008). Challenges in establishing free space optical communications between flying vehicles. In 2008 6th international symposium on communication systems, networks and digital signal processing (pp. 82–86).
  14. 14.
    Qi, W., Hou, W., Song, Q., Guo, L., & Jamalipour, A. (2016). Topology control and routing based on adaptive RF/FSO switching in space-air integrated networks. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6).
  15. 15.
    Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., & Shen, X. S. (2017). Software defined space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Communications Magazine, 55(7), 101–109. Scholar
  16. 16.
    Liu, H., Zhang, J., & Cheng, L. L. (2010). Application examples of the network fixed point theory for space-air-ground integrated communication network. In International congress on ultra modern telecommunications and control systems (pp. 989–993).
  17. 17.
    Liu, X., Qiu, M., Wang, X., Liu, W., & Cai, K. (2017). Energy efficiency optimization for communication of air-based information network with guaranteed timing constraints. Journal of Signal Processing Systems, 86(2), 299–312. Scholar
  18. 18.
    Baister, G., & Gatenby, P. V. (1994). Pointing, acquisition and tracking for optical space communications. Electronics Communication Engineering Journal, 6(6), 271–280. Scholar
  19. 19.
    Toyoshima, M. (2005). Trends in satellite communications and the role of optical free-space communications [Invited]. Journal of Optical Networking, 4(6), 300–311.
  20. 20.
    Kaushal, H., & Kaddoum, G. (2017). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys Tutorials, 19(1), 57–96. Scholar
  21. 21.
    Vishnevskii, V. M., Semenova, O. V., & Sharov, S. Y. (2013). Modeling and analysis of a hybrid communication channel based on free-space optical and radio-frequency technologies. Automation and Remote Control, 74(3), 521–528. Scholar
  22. 22.
    Alimi, I. A., Monteiro, P. P., & Teixeira, A. L. (2017). Outage probability of multiuser mixed RF/FSO relay schemes for heterogeneous cloud radio access networks (H-CRANs). Wireless Personal Communications, 95(1), 27–41. Scholar
  23. 23.
    Alimi, I. A., Teixeira, A. L., & Monteiro, P. P. (2017). Towards an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions. IEEE Communications Surveys Tutorials, 20(1), 708–769. Scholar
  24. 24.
    Yang, G., Khalighi, M. A., Bourennane, S., & Ghassemlooy, Z. (2012). Approximation to the sum of two correlated Gamma–Gamma variates and its applications in free-space optical communications. IEEE Wireless Communications Letters, 1(6), 621–624. Scholar
  25. 25.
    Aboderin, O., & Alimi, I. A. (2015). Modeling land mobile satellite channel and mitigation of signal fading. American Journal of Mobile Systems, Applications and Services, 1(1), 46–53.
  26. 26.
    Yang, G., Khalighi, M. A., Ghassemlooy, Z., & Bourennane, S. (2013). Performance evaluation of correlated-fading space-diversity FSO links. In 2013 2nd international workshop on optical wireless communications (IWOW) (pp. 71–73).
  27. 27.
    Zhang, J., Matthaiou, M., Karagiannidis, G. K., & Dai, L. (2016). On the multivariate Gamma–Gamma distribution with arbitrary correlation and applications in wireless communications. IEEE Transactions on Vehicular Technology, 65(5), 3834–3840. Scholar
  28. 28.
    Alimi, I., Shahpari, A., Ribeiro, V., Kumar, N., Monteiro, P., & Teixeira, A. (2016). Optical wireless communication for future broadband access networks. In 2016 21st European conference on networks and optical communications (NOC) (pp. 124–128).
  29. 29.
    Al, Naboulsi M., Sizun, H., & de Fornel, F. (2004). Fog attenuation prediction for optical and infrared waves. Optical Engineering, 43(2), 319–329. Scholar
  30. 30.
    Farid, A. A., & Hranilovic, S. (2007). Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 25(7), 1702–1710. Scholar
  31. 31.
    Sandalidis, H. G., Tsiftsis, T. A., & Karagiannidis, G. K. (2009). Optical wireless communications with heterodyne detection over turbulence channels with pointing errors. Journal of Lightwave Technology, 27(20), 4440–4445. Scholar
  32. 32.
    Andrews, L., & Phillips, R. (2005). Laser beam propagation through random media. Bellingham: SPIE Press, Press Monographs.CrossRefGoogle Scholar
  33. 33.
    Kiasaleh, K. (2005). Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence. IEEE Transactions on Communications, 53(9), 1455–1461. Scholar
  34. 34.
    Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2012). Optical wireless communications: System and channel modelling with MATLAB®. New York: Taylor & Francis.Google Scholar
  35. 35.
    Yang, Y.-Q., Chi, X.-F., Shi, J.-L., & Zhao, L.-L. (2015). Analysis of effective capacity for free-space optical communication systems over gamma-gamma turbulence channels with pointing errors. Optoelectronics Letters, 11(3), 213–216. Scholar
  36. 36.
    Aggarwal, M., Garg, P., & Puri, P. (2015). Ergodic capacity of SIM-based DF relayed optical wireless communication systems. IEEE Photonics Technology Letters, 27(10), 1104–1107. Scholar
  37. 37.
    Choi, J., & Love, D. J. (2014). Bounds on eigenvalues of a spatial correlation matrix. IEEE Communications Letters, 18(8), 1391–1394. Scholar
  38. 38.
    Lim, H., Jang, Y., & Yoon, D. (2017). Bounds for eigenvalues of spatial correlation matrices with the exponential model in MIMO systems. IEEE Transactions on Wireless Communications, 16(2), 1196–1204. Scholar
  39. 39.
    Loyka, S. L. (2001). Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communications Letters, 5(9), 369–371. Scholar
  40. 40.
    Navidpour, S. M., Uysal, M., & Kavehrad, M. (2007). BER performance of free-space optical transmission with spatial diversity. IEEE Transactions on Wireless Communications, 6, 2813–2819. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Isiaka A. Alimi
    • 1
  • Akeem O. Mufutau
    • 1
  • António L. Teixeira
    • 1
  • Paulo P. Monteiro
    • 1
  1. 1.Instituto de Telecomunicações, Department of Electronics, Telecommunications and InformaticsUniversidade de AveiroAveiroPortugal

Personalised recommendations