Skip to main content
Log in

Impact of Interference Between Neighbouring 5G Micro Operators

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Local small cell deployments will become an important part of the future 5G networks, in particular in the higher frequency bands. In order to speed up the wide-spread deployment of such ultra-dense networks, new business and spectrum authorization models are needed. The recently proposed concept of micro operators with local spectrum micro licensing has gained significant interest in research, industry and regulation to complement the traditional models based on networks deployed and operated by the mobile network operators. While assessing the applicability of the proposed micro operator concept, one important aspect is to evaluate the impact of the inter-operator interference on the performance of the victim network when deployed in the same or adjacent channel. To support such interference evaluations between micro operators, this paper proposes a deployment scenario including two neighbouring buildings, propagation models for connections both within a building and between the buildings, and a criteria for the required minimum separation distance based on the observed throughput loss. Finally, system simulations are performed to evaluate the impact of the key deployment aspects on the required minimum separation distance between the micro operators in the 3.5 GHz band. The obtained results indicate that the required minimum separation distances are highly scenario-specific, which needs to be considered in the overall local spectrum micro licensing model development and the setup of appropriate rules to coordinate the interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. EC. (2016). Communication from the Commission to the Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Connectivity for a competitive digital single market—Towards a European gigabit society. COM (2016) 587 Final. European Commission.

  2. GPPP. (2017). 5G innovations for new business opportunities. The 5G Infrastructure Public Private Partnership.

  3. Matinmikko, M., Latva-aho, M., Ahokangas, P., Yrjölä, S., & Koivumäki, T. (2017). Micro operators to boost local service delivery in 5G. Wireless Personal Communications, 95(1), 69–82.

    Article  Google Scholar 

  4. Zander, J. (2017). Beyond the ultra-dense barrier: Paradigm shifts on the road beyond 1000x wireless capacity. IEEE Wireless Communications, 24(3), 96–102.

    Article  Google Scholar 

  5. Saldana, J., et al. (2017). Alternative networks: Toward a global access to the Internet for all. IEEE Communications Magazine, 55(9), 187–193.

    Article  Google Scholar 

  6. EC. (2016). 5G for Europe: An action plan. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM (2016) 588 Final. European Commission.

  7. CEPT ECC. (2014). Licensed shared access. ECC Report 205. European Conference of Postal and Telecommunications, Electronic Communications Committee.

  8. FCC. (2016). Amendment of the Commission’s Rules with Regard to Commercial Operations in the 3550–3650 MHz Band, Order of Reconsiderations and Second Report and Order. FCC-16-55. Federal Communications Commission.

  9. Matinmikko, M., Roivainen, A., Latva-aho, M. & Hiltunen, K. (2017). Interference study of micro licensing for 5G micro operator small cell deployments. In Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom).

  10. Matinmikko, M., Latva-aho, M., Ahokangas, P. & Seppänen, V. (2018). On regulations for 5G: Micro licensing for locally operated networks. Telecommunications Policy (to appear).

  11. Ahokangas, P., Moqaddamerad, S., Matinmikko, M., Abouzeid, A., Atkova, I. Francis Gomes, J., & Iivari, M. (2016). Future micro operators business models in 5G. In International conference on Restructuring of the Global Economy (ROGE).

  12. Gupta, A. K., Andrews, J. G., & Heath, R. W. (2016). On the feasibility of sharing spectrum licenses in mmWave cellular systems. IEEE Transactions on Communications, 64(9), 3981–3995.

    Article  Google Scholar 

  13. Gupta, A. K., Alkhateeb, A., Andrews, J. G., & Heath, R. W. (2016). Gains of restricted secondary licensing in millimeter wave cellular systems. IEEE Journal on Selected Areas in Communications, 34(11), 2935–2950.

    Article  Google Scholar 

  14. 3GPP. (2013). Small cell enhancements for E-UTRA and E-UTRAN – Physical layer aspects. 3GPP TR 36.872, V12.1.0. 3rd Generation Partnership Project.

  15. Parkvall, S., Dahlman, E., Furuskär, A., & Frenne, M. (2017). NR: The new 5G radio access technology. IEEE Communications Standards Magazine., 1(4), 24–30.

    Article  Google Scholar 

  16. Hiltunen, K. (2014). The performance of dense and heterogeneous LTE network deployments within an urban environment. Doctoral dissertation. Aalto University.

  17. 3GPP. (2017). Study on channel model for frequencies from 0.5 to 100 GHz. 3GPP TR 38.901, V14.1.1. 3rd Generation Partnership Project.

  18. Lehtomäki, J., Vuohtoniemi, R., Matinmikko-Blue, M. & Hiltunen, K. (2018). Building-to-building propagation loss measurements at 3.5 GHz with application to micro operators. In IEEE Wireless Communications and Networking Conference (to appear).

  19. Berg, J.-E. (1995). A recursive method for street microcell path loss calculations. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

  20. Damosso, E. & Correia, L. M., Eds. (1999). Digital mobile radio towards future generation systems. Final report. European Commission. http://www.lx.it.pt/cost231/final_report.htm. Accessed 15 May 2017.

  21. Berg, J.-E. (1996). Building penetration loss along street microcells. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

  22. Semaan, E., Harrysson, F., Furuskär, A. & Asplund, H. (2014). Outdoor-to-indoor coverage in high frequency bands. In IEEE Globecom 2014 Workshop—Mobile Communications in Higher Frequency Bands.

  23. Ökvist, P., Asplund, H., Simonsson, A., Halvarsson, B., Medbo, J. & Seifi, N. (2015). 15 GHz propagation properties assessed with 5G radio access prototype. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)—Workshop on 5G Channel Measurements and Modeling.

  24. ITU-R. (2016). Compilation of measurement data relating to building entry loss. Report ITU-R P.2346-1. International Telecommunication Union Radiocommunication sector.

  25. Aalto University, AT&T, BUBT, CMCC, Ericsson, Huawei, Intel, KT Corporation, Nokia, NTT DOCOMO, New York University, Qualcomm, Samsung, University of Bristol, University of Southern California. (2015). 5G channel model for bands up to 100 GHz. White paper. http://www.5gworkshops.com/5GCM.html. Accessed 15 May 2017.

  26. 3GPP. (2017). Radio Frequency (RF) system scenarios. 3GPP TR 36.942, V14.0.0. 3rd Generation Partnership Project.

  27. 3GPP. (2017). Base station (BS) radio transmission and reception. 3GPP TS 36.104, V14.4.0. 3rd Generation Partnership Project.

  28. 3GPP. (2017). User equipment (UE) radio transmission and reception. 3GPP TS 36.101, V14.4.0. 3rd Generation Partnership Project.

  29. CEPT ECC. (2012). Broadband wireless systems usage in 2300-2400 MHz. ECC Report 172. European Conference of Postal and Telecommunications, Electronic Communications Committee.

Download references

Acknowledgements

Authors would like to acknowledge Business Finland for funding the “Micro-operator concept for boosting local service delivery in 5G (uO5G)” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimmo Hiltunen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiltunen, K., Matinmikko-Blue, M. & Latva-aho, M. Impact of Interference Between Neighbouring 5G Micro Operators. Wireless Pers Commun 100, 127–144 (2018). https://doi.org/10.1007/s11277-018-5617-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5617-5

Keywords

Navigation