Wireless Personal Communications

, Volume 100, Issue 1, pp 81–96 | Cite as

Research Challenges, Trends and Applications for Future Joint Radar Communications Systems

  • Atílio Gameiro
  • Daniel Castanheira
  • Jéssica Sanson
  • Paulo P. Monteiro


The future Internet of Things will integrate sensing and wireless communications. Among the multiple types of sensors to be used, sensors based on the radar principles are of interest for several applications, namely automotive. Dual functionality devices that integrate reflectometry and communication capabilities will be important to reduce development costs through the reuse of modules and to optimise the usage of radio resources, e.g. spectrum. This paper reviews the main trends that push for the merging of radar type sensors and wireless communications (RadCom). It presents the most important use cases that can be currently foreseen and identifies the main technology trends and issues to reach a mature technology, focusing on OFDM type waveforms that will enable a smooth integration with 4G and 5G.


Joint radar communication (JRC) Cyber-physical systems (CPS) Internet of things (IoT) Wireless sensor networks (WSNs) OFDM MIMO mMIMO 



This work is partially funded by the European Structural and Investment Funds (FEEI) through the Competitiveness and Internationalization Operational Program—COMPETE 2020 and by National Funds through FCT—Foundation for Science and Technology under the Project RETIOT (POCI-01-0145- FEDER- 016432).


  1. 1.
    ETSI TS 102 921 V2.1.1. (2013). Machine-to-machine communications (M2M); mIa, dIa and mId interfaces. Sophia-Antipolis: ETSI, Dec. 2013.Google Scholar
  2. 2.
    GPP TS 22.368. (2017). Service requirements for machine-type communications (MTC). 3GPP, January 2017.Google Scholar
  3. 3.
    XeThru. (2018). Single-chip radar sensors with sub-mm resolution. Accessed 2 Feb 2018.
  4. 4.
    Lien, J., Gillian, N., Karagozler, M., Amihood, P., Schwesig, C., & Olson, E., et al. (2016). Soli: Ubiquitous gesture sensing with millimeter wave radar. In: ACM transactions on graphics (vol. 35, no. 4, artc. 142), Jul. 2016.Google Scholar
  5. 5.
    Franken, G. E. A., Nikookar, H., & Genderen, P. V. (2006). Doppler tolerance of OFDM-coded radar signals. In: 2006 European radar conference (pp. 108–111).Google Scholar
  6. 6.
    Hara, S., & Prasad, R. (2003). Multicarrier techniques for 4G mobile communications. Norwood: Artech House Inc.Google Scholar
  7. 7.
    Ruck, G. T. (1970). Radar cross section handbook. New York: Plenum Press.CrossRefGoogle Scholar
  8. 8.
    Sit, Y. L., Reichardt, L., Sturm, C., & Zwick, T. (2011). Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario. In: 2011 IEEE RadarCon (RADAR) (pp. 718–723).Google Scholar
  9. 9.
    Sit, Y. L., & Zwick, T. (2014). MIMO OFDM radar with communication and interference cancellation features. In 2014 IEEE radar conference (pp. 265–268).Google Scholar
  10. 10.
    Gu, J. F., Moghaddasi, J., & Wu, K. (2015). Delay and doppler shift estimation for OFDM-based radar-radio (RadCom) system. In 2015 IEEE international wireless symposium (IWS 2015) (pp. 1–4).Google Scholar
  11. 11.
    Harding, J., et al. (2014). Vehicle-to-vehicle communications: Readiness of V2V technology for application (report no. DOT HS 812 014). Washington: National Highway Traffic Safety Administration (NHTSA).Google Scholar
  12. 12.
    Angelica, A. D. (2013). Google’s self-driving car gathers nearly 1 GB/s., May 4, 2013. Accessed 2 Nov 2016.
  13. 13.
    SAS. (2016). Are you ready for your smart car? Accessed 2 Nov 2016.
  14. 14.
    Han, L., & Wu, K. (2013). Joint wireless communication and radar sensing systems-state of the art and future prospects. IET Microwaves, Antennas and Propagation, 7, 876–885.CrossRefGoogle Scholar
  15. 15.
    Han, Y., Ekici, E., Kremo, H., & Altintas, O. (2016). Optimal spectrum utilization in joint automotive radar and communication networks. In 2016 14th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt), May 2016.Google Scholar
  16. 16.
    Choi, J., Gonzáalez-Prelcic, N., Daniels, R., Bhat, C. R., & Heath, R. W., Jr. (2016). Millimeter wave vehicular communication to support massive automotive sensing. IEEE Communications Magazine,
  17. 17.
    Avigilon Corporation. (2017). Avigilon presence detector (APD) sensor. Accessed 2 Feb 2018.
  18. 18.
    Ellinger, J., Zhang, Z., Wicks, M., & Wu, Z. (2016). Polar signal detection: Multi-carrier waveform design for improved radar detection performance. In: MILCOM 20162016 IEEE military communications conference (pp. 912–917) Baltimore, MD.Google Scholar
  19. 19.
    Jankiraman, M., Wessels, B. J., & van Genderen, P. (1998). Design of a Multifrequency FMCW Radar. In: Microwave conference, 1998. 28th European (pp. 584–589). Amsterdam: Netherlands.Google Scholar
  20. 20.
    Prasad, N., Shameem, V., Desai, U., & Merchant, S. (2004). Improvement in target detection performance of pulse coded doppler radar based on multicarrier modulation with Fast Fourier Transform (FFT). IEE Proceedings-Radar, Sonar and Navigation, 151(1), 11–17.CrossRefGoogle Scholar
  21. 21.
    Mahmood, M., & Bell, M. (2012). Non-linear processing for multicarrier MIMO radar for improved target resolution. In: Signals, systems and computers (ASILOMAR), 2012 conference record of the forty sixth asilomar conference on, (pp. 1317–1322) Nov 2012.Google Scholar
  22. 22.
    Qin, G., Chen, B., & Chen, D. (2009). A new method for velocity estimation in multicarrier-frequency MIMO radar. In: Radar conference, 2009 IET international (pp. 1–4).Google Scholar
  23. 23.
    Sen, S., & Nehorai, A. (2011). Adaptive OFDM radar for target detection in multipath scenarios. IEEE Transactions on Signal Processing, 59(1), 78–90.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sen, S., Tang, G., & Nehorai, A. (2011). Multiobjective optimization of OFDM radar waveform for target detection. IEEE Transactions on Signal Processing, 59(2), 639–652.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sen, S., & Nehorai, A. (2009). Target detection in clutter using adaptive OFDM radar. IEEE Signal Processing Letters, 16(7), 592–595.CrossRefGoogle Scholar
  26. 26.
    Garmatyuk, D., Schuerger, J., Morton, Y., Binns, K., Durbin, M., & Kimani, J. (2007). Feasibility study of a multi-carrier dual-use imaging radar and communication system. In: Proceedings of the IEEE international radar conference (pp. 194–197).Google Scholar
  27. 27.
    Garmatyuk, D., & Schuerger, J. (2008). Conceptual design of a dual-use radar/communication system based on OFDM. In: Proceedings of the IEEE military communications conference (MILCOM) (pp. 1–7).Google Scholar
  28. 28.
    Garmatyuk, D., Schuerger, J., Kauffman, K., & Spalding, S. (2009). Wideband OFDM system for radar and communications. In: Proceedings of the IEEE international radar conference (pp. 1–6).Google Scholar
  29. 29.
    Garmatyuk, D., & Kauffman, K. (2009). Radar and data communication fusion with UWB-OFDM software-defined system. In: Proceedings of the IEEE international conference on ultra-wideband (ICUWB) (pp. 454–458).Google Scholar
  30. 30.
    Garmatyuk, D., Schuerger, J., & Kauffman, K. (2011). Multifunctional software-defined radar sensor and data communication system. IEEE Sensors Journal, 11(1), 99–106.CrossRefGoogle Scholar
  31. 31.
    Sturm, C., & Wiesbeck, W. (2011). Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proceedings of the IEEE, 99(7), 1236–1259.CrossRefGoogle Scholar
  32. 32.
    Hassanien, A., & Vorobyov, S. (2009). Transmit/receive beamforming for MIMO radar with colocated antennas. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2089–2092).Google Scholar
  33. 33.
    Friedlander, B. (2009). On the relationship between MIMO and SIMO radars. IEEE Transactions on Signal Processing, 57(1), 394–398.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Li, J., & Stoica, P. (2008). MIMO radar signal processing. Hoboken: Wiley.CrossRefGoogle Scholar
  35. 35.
    Reichardt, L., Pontes, J., Sit, Y., & Zwick, T. (April 2011). Antenna optimization for time-variant MIMO systems. In: Proceedings of the IEEE 5th European conference on antennas and propagation (EUCAP) (pp. 2569–2573).Google Scholar
  36. 36.
    Sturm, C., Sit, Y., Braun, M., & Zwick, T. (2013). Spectrally interleaved multi-carrier signals for radar network applications and multi-input multioutput radar. IET Radar, Sonar and Navigation, 7(3), 261–269.CrossRefGoogle Scholar
  37. 37.
    Magueta, R. L., Castanheira, D., Silva, A., Dinis, R., & Gameiro, A. (2017). Hybrid iterative space–time equalization for multi-user mmW massive MIMO systems. IEEE Transactions on Communications, 65(2), 608–620.CrossRefGoogle Scholar
  38. 38.
    Larson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRefGoogle Scholar
  39. 39.
    Boccardi, F., Heath, R. W., Jr., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.CrossRefGoogle Scholar
  40. 40.
    Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRefGoogle Scholar
  41. 41.
    Rusek, F., Persson, D., Lau, B., Larsson, E., Marzetta, T., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRefGoogle Scholar
  42. 42.
    Swindlehurts, A., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52(9), 52–62.CrossRefGoogle Scholar
  43. 43.
    Roh, W., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G Cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRefGoogle Scholar
  44. 44.
    Rappaport, T., et al. (2014). Millimeter wave wireless communications. Upper Saddle River: Prentice Hall.Google Scholar
  45. 45.
    Rappaport, T. S., MacCartney, G., Jr., Samimi, M., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.CrossRefGoogle Scholar
  46. 46.
    Alkhateeb, A., Mo, J., Gonzáles-Prelcic, N., & Heath, R. W., Jr. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.CrossRefGoogle Scholar
  47. 47.
    Levanon, N. (2000). Multifrequency complementary phase-coded radar signal. IEE Proceedings-Radar, Sonar and Navigation, 147, 276–284.CrossRefGoogle Scholar
  48. 48.
    Donnet, B. J., & Longstaff, I. D. (2006). Combining MIMO radar with OFDM communications. In: 2006 European radar conference (pp. 37–40).Google Scholar
  49. 49.
    Lellouch, G., & Nikookar, H. (2007). On the capability of a radar network to support communications. In: 2007 14th IEEE symposium on communications and vehicular technology in the Benelux (pp. 1–5).Google Scholar
  50. 50.
    Garmatyuk, D., Schuerger, J., Morton, Y.T., Binns, K., Durbin, M., & Kimani, J. (2007). Feasibility study of a multi-carrier dual-use imaging radar and communication system. In: 2007 European radar conference (pp. 194–197).Google Scholar
  51. 51.
    Sturm, C., Zwick, T., & Wiesbeck, W. (2009). An OFDM system concept for joint radar and communications operations. In: VTC spring 2009IEEE 69th vehicular technology conference (pp. 1–5).Google Scholar
  52. 52.
    Dida, M. A., Hao, H., Wang, X., & Ran, T. (2016). Constant envelope chirped OFDM for power-efficient radar communication. In: 2016 IEEE information technology, networking, electronic and automation control conference (pp. 298–301).Google Scholar
  53. 53.
    Koslowski, S., Braun, M., & Jondral, F. K. (2014). Using filter bank multicarrier signals for radar imaging. In: 2014 IEEE/ION position, location and navigation symposiumPLANS 2014 (pp. 152–157).Google Scholar
  54. 54.
    Fink, J., Braun, M., & Jondral, F. K. (2012). Effects of arbitrarily spaced subcarriers on detection performance in OFDM radar. In: 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5).Google Scholar
  55. 55.
    Nuss, B., Sit, L., & Zwick, T. (2017). A novel technique for interference mitigation in OFDM radar using compressed sensing. In: 2017 IEEE MTT-S international conference on microwaves for intelligent mobility (ICMIM) (pp. 143–146).Google Scholar
  56. 56.
    Cheng, S.-J., Wang, W.-Q., & Shao, H.-Z. (2015). Spread spectrum-coded OFDM chirp waveform diversity design. IEEE Sensors Journal, 15(10), 5694–5700.CrossRefGoogle Scholar
  57. 57.
    Shan, T. J., & Kailath, T. (1985). Adaptive beamforming for coherent signals and interference. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP, 33, 527–536.CrossRefGoogle Scholar
  58. 58.
    Zheng, L., & Wang, X. (2017). Super-resolution delay-doppler estimation for OFDM passive radar. IEEE Transactions on Signal Processing, 65, 2197–2210.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Sturm, C., & Wiesbeck, W. (2011). Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proceedings of the IEEE, 99, 1236–1259.CrossRefGoogle Scholar
  60. 60.
    Contu, M., & Lombardo, P. (2013). Sidelobe control for a MIMO radar virtual array. In: 2013 IEEE radar conference (RadarCon13) (pp. 1–6).Google Scholar
  61. 61.
    Sit, Y. L., Sturm, C., Baier, J., & Zwick, T. (2012). Direction of arrival estimation using the MUSIC algorithm for a MIMO OFDM radar. In: 2012 IEEE radar conference (pp. 226–229).Google Scholar
  62. 62.
    Sit, Y. L., Nguyen, T. T., & Zwick, T. (2013). 3D radar imaging with a MIMO OFDM-based radar. In: 2013 Asia-Pacific microwave conference proceedings (APMC) (pp. 68–70).Google Scholar
  63. 63.
    Nuss, B., Sit, Y. L., & Zwick, T. (2016). 3D radar image fusion using OFDM-based MIMO radar. In: 2016 German microwave conference (GeMiC) (pp. 209–212).Google Scholar
  64. 64.
    Auer, G. (2012). 3D MIMO-OFDM channel estimation. IEEE Transactions on Communications, 60, 972–985.CrossRefGoogle Scholar
  65. 65.
    Ketpan, W., & Sellathurai, M. (2016). Compressive sensing-based 3D signal extraction for MIMO passive radar using OFDM waveforms. In: 2016 IEEE international conference on communications (ICC). (pp. 1–6).Google Scholar
  66. 66.
    Sit, Y. L., & Zwick, T. (2014). Automotive MIMO OFDM radar: Subcarrier allocation techniques for multiple-user access and DOA estimation. In: 2014 11th European radar conference (pp. 153–156).Google Scholar
  67. 67.
    Yuan, D., Joung, J., Ho, C. K., & Sun, S. (2013). On tractability aspects of optimal resource allocation in OFDMA systems. IEEE Transactions on Vehicular Technology, 62(2), 863–873.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Atílio Gameiro
    • 1
  • Daniel Castanheira
    • 2
  • Jéssica Sanson
    • 1
  • Paulo P. Monteiro
    • 1
  1. 1.Instituto de Telecomunicações and DETIUniversidade de AveiroAveiroPortugal
  2. 2.Instituto de TelecomunicaçõesAveiroPortugal

Personalised recommendations