Performance evaluation of DVB-t image transmission over a MIMO OWC channel at 650 nm under varying turbulence regimes

Abstract

With the convergence of Information, telecom and broadband services, the digital TV broadcast has undergone a drastic change. For 5G and beyond, the Optical Wireless Communication (OWC) is gaining popularity as a distribution technology in access networks. However, OWC channel is undeterministic in nature due to its interaction with the atmosphere. A great deal of effort has been devoted in the existing literature to determine Quality of Service (QoS) performance for broadcast over an OWC channel whereas Quality of Experience (QoE) has been frequently overlooked. With this motivation, a holistic performance appraisal comprising of both QoS evaluation in terms of Symbol Error Rate (SER) and QoE assessment in terms of a visual indicator i.e. Structure Similarity Index (SSIM) is presented for a DVB-t image transmission over an OWC link under different turbulence regimes with Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) systems. The results show that the improvements suggested by QoS from designer perspective need not necessarily pertain to quality enhancement at the end user side.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Cisco Visual Networking Index: Forecast and Methodology, 2014–2019. (2017). CISCO [Online]. Retrieved Sept 16, 2020 from https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1644203.

  2. 2.

    Radivojević, M., & Matavulj, P. (2017). Introduction. In: The emerging WDM EPON. Springer, Cham. https://doi.org/10.1007/978-3-319-54224-9_1.

  3. 3.

    The Future of Cable TV. (2018). Industry paper on trends and implications. In The International Telecommunication Union (ITU) workshop on "the future of cable TV". ITU Headquarters, Geneva, Switzerland. Retrieved Sept 18, 2020 from https://www.itu.int/en/ITU-D/Regional-Presence/Europe/Documents/Events/2018/FutureofCableTV/ThefutureofcableTV_preevent.pdf

  4. 4.

    Hong, H., Xu, Y., He, D., Gao, N., Wu, Y., & Zhang, W. (2019). Evaluation of non-uniform constellations for the converged network of broadcast and broadband. In IEEE international symposium on broadband multimedia systems and broadcasting (BMSB), Jeju, Korea (South) (pp. 1–5). https://doi.org/10.1109/BMSB47279.2019.8971876.

  5. 5.

    Hasanov, M. H., Ibrahimov, B. G., & Mardanov, N. T. (2019). Research and analysis performance indicators NGN/IMS networks in the transmission multimedia traffic. In Wave electronics and its application in information and telecommunication systems (WECONF), Saint-Petersburg, Russia (pp. 1–4). https://doi.org/10.1109/WECONF.2019.8840117.

  6. 6.

    Sanchez, A., & Carro, B. (2017). The evolving pay TV. In Digital services in the 21st century: A strategic and business perspective (pp. 51–68). IEEE. https://doi.org/10.1002/9781119314905.ch5.

  7. 7.

    Xu, Z., Yang, L., & Cao, S. (2017). Design and implementation on integration for interactive service based on set-top boxes. In 2017 8th IEEE international conference on software engineering and service science (ICSESS). https://doi.org/10.1109/ICSESS.2017.8342909.

  8. 8.

    Kierkegaard, L. (2016). TV broadcast and 5G. In R. Prasad (Ed.), 5G outlook: Innovations and applications (pp. 131–141). Essex: River Publishers.

    Google Scholar 

  9. 9.

    Fischer, W. (2020). Outlook: Digital video and audio broadcasting technology. In Signals and communication technology (pp. 1000–1001). Springer, Cham. https://doi.org/10.1007/978-3-030-32185-7_49.

  10. 10.

    ETSI EN 300 744 V1.6.1. (2009–10). Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television. European Standard (Telecommunications series).

  11. 11.

    Moraitis, N., Vasileiou, P., Kakoyiannis, C., Marousis, A., Kanatas, A., & Constantinou, P. (2014). Radio planning of single frequency networks for broadcasting digital TV in mixed-terrain regions. IEEE Antennas and Propagation Magazine, 56(6), 123–141. https://doi.org/10.1109/MAP.2014.7011024.

    Article  Google Scholar 

  12. 12.

    Gomez-Barquero, D., Navratil, D., Appleby, S., & Stagg, M. (2018). Point-to-multipoint communication enablers for the fifth generation of wireless systems. IEEE Communications Standards Magazine, 2(1), 53–59. https://doi.org/10.1109/MCOMSTD.2018.1700069.

    Article  Google Scholar 

  13. 13.

    Guo, W., Fuentes, M., Christodoulou, L., & Mouhouche, B. (2018). Roads to multimedia broadcast multicast services in 5G new radio. In IEEE international symposium on broadband multimedia systems and broadcasting (BMSB), Valencia, 2018 (pp. 1–5). https://doi.org/10.1109/BMSB.2018.8436874.

  14. 14.

    Zhang, L., Wu, Y., Li, W., Salehian, K., Lafleche, S., Wang, X., & Montalban, J. (2018). Layered-division multiplexing: An enabling technology for multicast/broadcast service delivery in 5G. IEEE Communications Magazine, 56(3), 82–90. https://doi.org/10.1109/MCOM.2018.1700657.

    Article  Google Scholar 

  15. 15.

    Gimenez, J. J., Carcel, J. L., Fuentes, M., Garro, E., Elliott, S., Vargas, D., & Gomez-Barquero, D. (2019). 5G new radio for terrestrial broadcast: A forward-looking approach for NR-MBMS. IEEE Transactions on Broadcasting, 65(2), 356–368. https://doi.org/10.1109/TBC.2019.2912117.

    Article  Google Scholar 

  16. 16.

    Alimi, I., Shahpari, A., Ribeiro, V., Kumar, N., Monteiro, P., & Teixeira, A. (2016). Optical wireless communication for future broadband access networks. In 2016 21st European conference on networks and optical communications (NOC). org/https://doi.org/10.1109/NOC.2016.7506998.

  17. 17.

    Ayyash, M., Elgala, H., Khreishah, A., Jungnickel, V., Little, T., Shao, S., et al. (2016). Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges. IEEE Communications Magazine, 54(2), 64–71. https://doi.org/10.1109/MCOM.2016.7402263.

    Article  Google Scholar 

  18. 18.

    Kaushal, H., & Georges, K. (2017). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2016.2603518.

    Article  Google Scholar 

  19. 19.

    Jaffer, S. S., Hussain, A., Qureshi, M. A., et al. (2020). Towards the shifting of 5G front haul traffic on passive optical network. Wireless Personal Communications, 112, 1549–1568. https://doi.org/10.1007/s11277-020-07115-6.

    Article  Google Scholar 

  20. 20.

    Irfan, M., Qureshi, M. S., & Zafar, S. (2015). Evaluation of advanced modulation formats using triple-play services in GPON based FTTH. In 2015 international conference on cloud computing (ICCC), Riyadh (pp. 1–6). https://doi.org/10.1109/CLOUDCOMP.2015.7149639.

  21. 21.

    Chowdhury, M. Z., Hasan, M. K., Shahjalal, M., Hossan, M. T., & Jang, Y. M. (2020). Optical wireless hybrid networks: Trends, opportunities, challenges, and research directions. IEEE Communications Surveys & Tutorials, 22(2), 930–966. https://doi.org/10.1109/COMST.2020.2966855.

    Article  Google Scholar 

  22. 22.

    Elsayed, E. E., & Yousif, B. B. (2020). Performance evaluation and enhancement of the modified OOK based IM/DD techniques for hybrid fiber/FSO communication over WDM-PON systems. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-020-02497-0.

    Article  Google Scholar 

  23. 23.

    Nguyen, D.-N., Vallejo, L., Bohata, J., Ortega, B., Ghassemlooy, Z., & Zvanovec, S. (2020). Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity. Optics Communications. https://doi.org/10.1016/j.optcom.2020.126281.

    Article  Google Scholar 

  24. 24.

    Khan, M. N., Gilani, S. O., Jamil, M., Rafay, A., Awais, Q., Khawaja, B. A., et al. (2018). Maximizing throughput of hybrid FSO-RF communication system: An algorithm. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2840535.

    Article  Google Scholar 

  25. 25.

    Alimi, I., Shahpari, A., Sousa, A., Ferreira, R., Monteiro, P., & Teixeira, A. (2017). Challenges and opportunities of optical wireless communication technologies. Optical Communication Technology. https://doi.org/10.5772/intechopen.69113.

    Article  Google Scholar 

  26. 26.

    Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2014.2329501.

    Article  Google Scholar 

  27. 27.

    Kumar, A., & Krishnan, P. (2020). Performance analysis of RoFSO links with spatial diversity over combined channel model for 5G in smart city applications. Optics Communications. https://doi.org/10.1016/j.optcom.2020.125600.

    Article  Google Scholar 

  28. 28.

    Majumdar, A. K. (2019). Basics of worldwide broadband wireless access independent of terrestrial limitations. In Optical wireless communications for broadband global internet connectivity (pp. 5–38). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813365-1.00002-3.

  29. 29.

    Khalid, A., Saeed, A., Khan, N., Ali, A., Altaf, Z., & Siddiqui, A. R. (2019). Design of a CSK-CDMA based indoor visible light communication transceiver using raspberry Pi and LabVIEW. International Journal of Integrated Engineering. https://doi.org/10.30880/ijie.2019.11.08.012.

    Article  Google Scholar 

  30. 30.

    Khalid, A., Asif, H. M., Kostromitin, K. I., Al-Otaibi, S., Saidul Huq, K. M., & Rodriguez, J. (2019). Doubly orthogonal wavelet packets for multi-users indoor visible light communication systems. In Photonics (Vol. 6, No. 3, p. 85). https://doi.org/10.3390/photonics6030085.

  31. 31.

    Khalid, A., Asif, H. M., Mumtaz, S., Al Otaibi, S., & Konstantin, K. (2019). Design of MIMO-visible light communication transceiver using maximum rank distance codes. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2924202.

    Article  Google Scholar 

  32. 32.

    Fath, T., & Haas, H. (2013). Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Transactions on Communications, 61(2), 733–742. https://doi.org/10.1109/TCOMM.2012.120512.110578.

    Article  Google Scholar 

  33. 33.

    Ravikumar, J., & Prasad, R. (2016). Adding a new dimension to customer experience, the reality of 6th sense. In R. Prasad (Ed.), 5G and beyond 5G outlook: Innovations and applications. Essex: River Publishers.

    Google Scholar 

  34. 34.

    Varela, M., Skorin-Kapov, L., & Ebrahimi, T. (2014). Quality of service versus quality of experience. In S. Möller & A. Raake (Eds.), Quality of experience. T-Labs series in telecommunication services. Cham: Springer. https://doi.org/10.1007/978-3-319-02681-7_6.

    Google Scholar 

  35. 35.

    Song, W. (2020). Quality of experience. In X. Shen, X. Lin, & K. Zhang (Eds.), Encyclopedia of wireless networks. Cham: Springer. https://doi.org/10.1007/978-3-319-78262-1.

    Google Scholar 

  36. 36.

    Tiotsop, L. F., Masala, E., Aldahdooh, A., Wallendael, G. V., & Barkowsky, M. (2019). Computing quality-of-experience ranges for video quality estimation. In Eleventh international conference on quality of multimedia experience (QoMEX), Berlin, Germany (pp. 1–3). https://doi.org/10.1109/QoMEX.2019.8743303.

  37. 37.

    Hoßfeld, T., Heegaard, P. E., Varela, M., & Möller, S. (2016). QoE beyond the MOS: An in-depth look at QoE via better metrics and their relation to MOS. Quality and User Experience. https://doi.org/10.1007/s41233-016-0002-1.

    Article  Google Scholar 

  38. 38.

    Wang, S., Zhang, Y., Yang, D., & Chen, Z. (2019). SSIM prediction for H.265/HEVC based on convolutional neural networks. IEEE Visual Communications and Image Processing (VCIP). https://doi.org/10.1109/VCIP47243.2019.8965734.

    Article  Google Scholar 

  39. 39.

    Zhou, Y., Yu, M., Ma, H., Shao, H., & Jiang, G. (2018). Weighted-to-spherically-uniform SSIM objective quality evaluation for panoramic video. In 14th IEEE international conference on signal processing (ICSP), Beijing, China (pp. 54–57). https://doi.org/10.1109/ICSP.2018.8652269.

  40. 40.

    Al-Halafi, A., Oubei, H. M., Ooi, B. S., & Shihada, B. (2017). Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode. Journal of Optical Communications and Networking, 9(10), 826–832. https://doi.org/10.1364/JOCN.9.000826.

    Article  Google Scholar 

  41. 41.

    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861.

    Article  Google Scholar 

  42. 42.

    Winkler, S. (2005). Vision. Digital video quality: Vision models and metrics. London: Wiley. https://doi.org/10.1002/9780470024065.ch2.

    Google Scholar 

  43. 43.

    Chaudhary, S., Amphawan, A., & Nisar, K. (2014). Realization of free space optics with OFDM under atmospheric turbulence. Optik - International Journal for Light and Electron Optics, 125(18), 5196–5198. https://doi.org/10.1016/j.ijleo.2014.05.036.

    Article  Google Scholar 

  44. 44.

    Popoola, W. O., Ghassemlooy, Z., Gao, S., Allen, J. I. H., & Leitgeb, E. (2008). Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel. IET Optoelectronics, 2(1), 16–23. https://doi.org/10.1049/iet-opt:20070030.

    Article  Google Scholar 

  45. 45.

    Nistazakis, H. E., Stassinakis, A. N., Sheikh Muhammad, S., & Tombras, G. S. (2014). BER estimation for multi-hop RoFSO QAM or PSK OFDM communication systems over gamma gamma or exponentially modeled turbulence channels. Optics & Laser Technology, 64, 106–112. https://doi.org/10.1016/j.optlastec.2014.05.004.

    Article  Google Scholar 

  46. 46.

    Ajewole, B. D., Odeyemi, K. O., Owolawi, P. A., & Srivastava, V. M. (2019). Performance of OFDM-FSO communication system with different modulation schemes over gamma–gamma turbulence channel. Journal of Communications. https://doi.org/10.12720/jcm.14.6.490-497.

    Article  Google Scholar 

  47. 47.

    Nistazakis, H. E., Stassinakis, A. N., Sandalidis, H. G., & Tombras, G. S. (2015). QAM and PSK OFDM RoFSO over M-turbulence induced fading channels. IEEE Photonics Journal, 7(1), 1–11. https://doi.org/10.1109/JPHOT.2014.238167.

    Article  Google Scholar 

  48. 48.

    Wang, Y., Wang, D., & Ma, J. (2015). On the performance of coherent OFDM systems in free-space optical communications. IEEE Photonics Journal, 7(4), 1–10. https://doi.org/10.1109/JPHOT.2015.2450532.

    MathSciNet  Article  Google Scholar 

  49. 49.

    Kumar, P., & Thakor, S. (2017). Performance of OFDM-FSO link with analog network coding. Photonic Network Communications, 35(2), 210–224. https://doi.org/10.1007/s11107-017-0730-z.

    Article  Google Scholar 

  50. 50.

    Krishnan, P., & Pati, P. S. (2019). Modelling of OFDM based RoFSO system for 5G applications over varying weather conditions: A case study. Optik - International Journal for Light and Electron Optics, 184(2019), 313–323. https://doi.org/10.1016/j.ijleo.2019.03.031.

    Article  Google Scholar 

  51. 51.

    Elamassie, M., & Uysal, M. (2020). Incremental diversity order for characterization of FSO communication systems over lognormal fading channels. IEEE Communications Letters. https://doi.org/10.1109/lcomm.2020.2966479.

    Article  Google Scholar 

  52. 52.

    Wilson, S. G., Brandt-Pearce, M., Cao, Q., & Leveque, J. H. (2005). Free-space optical MIMO transmission with Q-ary PPM. IEEE Transactions on Communications, 53(8), 1402–1412.

    Article  Google Scholar 

  53. 53.

    Prabu, K. (2019). Analysis of FSO systems with SISO and MIMO techniques. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06139-x.

    Article  Google Scholar 

  54. 54.

    Prabu, K., Sriram-Kumar, D., & Malekian, R. (2014). BER analysis of BPSK-SIM-based SISO and MIMO FSO systems in strong turbulence with pointing errors. Optik-International Journal for Light and Electron Optics, 125(21), 6413–6417. https://doi.org/10.1016/j.ijleo.2014.08.006.

    Article  Google Scholar 

  55. 55.

    Yi, X., Yao, M., & Wang, X. (2017). MIMO FSO communication using subcarrier intensity modulation over double generalized gamma fading. Optics Communications, 382, 64–72. https://doi.org/10.1016/j.optcom.2016.07.064.

    Article  Google Scholar 

  56. 56.

    Song, X., & Cheng, J. (2013). Subcarrier intensity modulated MIMO optical communications in atmospheric turbulence. IEEE/OSA Journal of Optical Communications and Networking, 5(9), 1001–1009. https://doi.org/10.1364/JOCN.5.001001.

    Article  Google Scholar 

  57. 57.

    Bhatnagar, M. R., & Ghassemlooy, Z. (2016). Performance analysis of gamma-gamma fading FSO MIMO links with pointing errors. Journal of Lightwave Technology, 34(9), 2158–2169. https://doi.org/10.1109/JLT.2016.2526053.

    Article  Google Scholar 

  58. 58.

    Ding, J., Yu, S., Fu, Y., Ma, J., & Tan, L. (2019). New approximate and asymptotic closed-form expressions for the outage probability and the average BER of MIMO-FSO system with MRC diversity technique over Gamma–Gamma fading channels with generalized pointing errors. Optics Communications. https://doi.org/10.1016/j.optcom.2019.124633.

    Article  Google Scholar 

  59. 59.

    Priyadarshani, R., Bhatnagar, M. R., Bohata, J., Zvanovec, S., & Ghassemlooy, Z. (2020). Experimental and analytical investigations of an optically pre-amplified FSO-MIMO system with repetition coding over non-identically distributed correlated channels. IEEE Access. https://doi.org/10.1109/access.2020.2964149.

    Article  Google Scholar 

  60. 60.

    Hoeher, P. A. (2019). Modulation schemes for optical wireless communications. Visible light communications (pp. 65–132). Amsterdam: Elsevier. https://doi.org/10.3139/9783446461727.004.

    Google Scholar 

  61. 61.

    Tören, M., & Çiflikli, C. (2016). Comparison of reduction methods for peak-to-average-power-ratio (PAPR) in MIMO-OFDM systems with a new approach. Acta Physica Polonica A. https://doi.org/10.12693/APhysPolA.130.417.

    Article  Google Scholar 

  62. 62.

    Musabe, R., Lionel, M. B., Mugongo Ushindi, V., Atupenda, M., Ntaganda, J., & Bajpai, G. (2019). PAPR reduction in LTE network using both peak windowing and clipping techniques. Journal of Electrical Systems and Information Technology. https://doi.org/10.1186/s43067-019-0004-1.

    Article  Google Scholar 

  63. 63.

    Wang, J., Xu, Y., Ling, X., Zhang, R., Ding, Z., & Zhao, C. (2016). PAPR analysis for OFDM visible light communication. Optics Express, 24(24), 27457. https://doi.org/10.1364/OE.24.027456.

    Article  Google Scholar 

  64. 64.

    Le Khoa, D., Tu, N. T., Thu, N. T. H., & Phuong, N. H. (2014). Peak-to-average power ratio reduction in long haul coherent optical OFDM systems. In I. Zelinka et al. (Eds.), AETA 2013: Recent advances in electrical engineering and related sciences. Lecture notes in electrical engineering (pp. 221–228). Berlin: Springer. http://dx.doi.org/https://doi.org/10.1007/978-3-642-41968-3_23.

  65. 65.

    Abdulkafi, A. A., Alias, M. Y., Hussein, Y. S., Omar, N., & Salleh, M. K. B. (2017). PAPR reduction of DC biased optical OFDM using combined clipping and PTS techniques. In IEEE 13th Malaysia international conference on communications (MICC). https://doi.org/10.1109/MICC.2017.8311760.

  66. 66.

    Sharifi, A. A. (2019). PAPR reduction of optical OFDM signals in visible light communications. ICT Express. https://doi.org/10.1016/j.icte.2019.01.001.

    Article  Google Scholar 

  67. 67.

    Shi, Y., Huang, S., Luo, L., Yuan, Y., & Yue, Q. (2019). Bias controller of Mach–Zehnder modulator for electro-optic analog-to-digital converter. Micromachines, 10(12), 800. https://doi.org/10.3390/mi10120800.

    Article  Google Scholar 

  68. 68.

    Chen, W. F., Wei, Z. J., Guo, L., Hou, L. Y., Wang, G., Wang, J. D., et al. (2014). An autobias control system for the electro—Optic modulator used in a quantum key distribution system. Chinese Physics B, 23(8), 261–268. https://doi.org/10.1088/1674-1056/23/8/080304.

    Article  Google Scholar 

  69. 69.

    Arnon, S. (2016). Optical wireless communications. In R. G. Driggers, C. Hoffman, & R. Driggers (Eds.), Encyclopedia of optical and photonic engineering (pp. 1866–1886). Boca Raton: CRC Press. https://doi.org/10.1081/E-EOE2.

    Google Scholar 

  70. 70.

    Katsilieris, T. D., Latsas, G. P., Nistazakis, H. E., & Tombras, G. S. (2016). A computational tool which has been designed for performance estimations of wireless hybrid FSO/MMW communication links. In Proceedings of the 7th international conference from scientific computing to computational engineering (IC-SCCE), Athens, Greece.

  71. 71.

    Muhammad, S. S., Köhldorfer, P., & Leitgeb, E. (2005). Channel modeling for terrestrial free optical links. In Proceedings of the 7th international conference on transparent optical networks (ICTON), Barcelona, Spain (pp. 407–410). https://doi.org/10.1109/ICTON.2005.1505832.

  72. 72.

    Li, M., & Cvijetic, M. (2015). Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction. Applied Optics, 54(6), 1453–1462. https://doi.org/10.1364/AO.54.001453.

    Article  Google Scholar 

  73. 73.

    Priyanka, P., Singh, M. L., Gill, H. S., Singh, M., & Kaur, S. (2020). An experimental evaluation of link outage due to beam wander in a turbulent FSO link. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07333-y.

    Article  Google Scholar 

  74. 74.

    Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications, 3(8), 1402–1409. https://doi.org/10.1049/IET-COM.2008.0212.

    Article  Google Scholar 

  75. 75.

    Majumdar, A. K., Luna, C. E., & Idell, P. S. (2007). Reconstruction of probability density function of intensity fluctuations relevant to Free Space Laser communications through atmospheric turbulence. In Proceedings on SPIE 6709, free-space laser communications VII; 67090M. https://doi.org/10.1117/12.728699.

  76. 76.

    Bekkali, A., Ben Naila, C., Kazaura, K., Wakamori, K., & Matsumoto, M. (2010). Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by gamma–gamma distribution. IEEE Photonics Journal, 2(3), 510–520. https://doi.org/10.1109/JPHOT.2010.2050306.

    Article  Google Scholar 

  77. 77.

    Yang, G., Khalighi, M. A., Bourennane, S., & Ghassemlooy, Z. (2014). Fading correlation and analytical performance evaluation of the space-diversity free-space optical communications system. Journal of Optics, 16(3), 035403. https://doi.org/10.1088/2040-8978/16/3/035403.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harpuneet Singh Gill.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gill, H.S., Singh, M.L. Performance evaluation of DVB-t image transmission over a MIMO OWC channel at 650 nm under varying turbulence regimes. Wireless Netw (2021). https://doi.org/10.1007/s11276-021-02559-5

Download citation

Keywords

  • Digital video broadcasting (DVB)
  • Multiple input multiple output (MIMO)
  • Optical wireless communication (OWC)
  • Structure similarity index (SSIM)
  • Symbol error rate (SER)
  • Turbulence