Service discovery in the Internet of Things: review of current trends and research challenges


Recent technologies have made the life of people more comfortable and more straightforward than it was before. With the development of information technology, the Internet of Things (IoT) as an emerging technology has been entered into a lane of development. With the advent of IoT, data sharing, and connections among systems, devices, and people have been facilitated, and daily devices have been equipped with sensors and applications to provide their functionality through services. As a matter of fact, IoT provides a platform where everyday objects become smarter than before, everyday communication becomes informative, and everyday processes become intelligent. In this regard, to provide novel IoT services, numerous heterogeneous frameworks and protocols have been proposed. Since the number of IoT devices or objects is growing day by day, and the number of services is also increasing, discovering and locating appropriate services becomes a vital challenge, and the traditional service discovery strategies are not efficient enough to handle this issue. Service discovery refers to the process of finding suitable services according to clients' requests. Although the service discovery problem has essential impacts on the IoT, there is not any detailed and systematic study of the existing methods in this field. Therefore, this paper aims to find, categorize, and investigate all the effective and valid papers in the field of service discovery in the IoT using a systematic method. The selected papers are discussed based on various service discovery metrics and other criteria such as adopted architecture, search method, service description, discovery scope, adopted simulation tools, and datasets. The advantages and weaknesses of each reviewed paper are specified. Moreover, an abreast comparison of the selected papers is presented, in which the aforementioned methods are evaluated considering the mentioned metrics and criteria. Finally, future research directions and challenging problems are outlined to help researchers improve their innovations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.


  1. 1.

    Pourghebleh, B., & Hayyolalam, V. (2019). A comprehensive and systematic review of the load balancing mechanisms in the Internet of Things. Cluster Computing.

    Article  Google Scholar 

  2. 2.

    Almusaylim, Z. A., & Zaman, N. (2019). A review on smart home present state and challenges: linked to context-awareness internet of things (IoT). Wireless Networks.,25, 3193–3204.

    Article  Google Scholar 

  3. 3.

    Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in Internet of Things: Taxonomies and Open Challenges. Mobile Networks Application,24, 796–809.

    Article  Google Scholar 

  4. 4.

    Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks.,10, 1497–1516.

    Article  Google Scholar 

  5. 5.

    Pourghebleh, B., & Navimipour, N. J. (2017). Data aggregation mechanisms in the Internet of things: A systematic review of the literature and recommendations for future research. Journal of Network and Computer Applications,97, 23–34.

    Article  Google Scholar 

  6. 6.

    Gautam, S.K., Om, H., Dixit, & K. (2020) Intrusion detection system in internet of things. In Lecture Notes in Networks and Systems (pp. 65–93). Springer.

  7. 7.

    Pourghebleh, B., Wakil, K., & Navimipour, N. J. (2019). A comprehensive study on the trust management techniques in the Internet of Things. IEEE Internet Things Journal,6, 9326–9337.

    Article  Google Scholar 

  8. 8.

    Liu, X., Zhao, S., Liu, A., Xiong, N., & Vasilakos, A. V. (2019). Knowledge-aware proactive nodes selection approach for energy management in Internet of Things. Future Generation Computer Systems,92, 1142–1156.

    Article  Google Scholar 

  9. 9.

    Shinde, G., & Olesen, H. (2018) A survey on service discovery mechanism. In Advances in Intelligent Systems and Computing (pp 227–236). Springer

  10. 10.

    Jia, X., He, D., Kumar, N., & Choo, K. K. R. (2019). Authenticated key agreement scheme for fog-driven IoT healthcare system. Wireless Networks,25, 4737–4750.

    Article  Google Scholar 

  11. 11.

    Babar, M., & Arif, F. (2019). Real-time data processing scheme using big data analytics in internet of things based smart transportation environment. Journal of Ambient Intelligence and Humanized Computing,10, 4167–4177.

    Article  Google Scholar 

  12. 12.

    Abdel-Basset, M., Manogaran, G., Mohamed, M., & Rushdy, E. (2019). Internet of things in smart education environment: Supportive framework in the decision-making process. Concurrency and Computation.,31, e4515.

    Article  Google Scholar 

  13. 13.

    Gu, Y., Chen, H., Zhou, Y., Li, Y., & Vucetic, B. (2019). Timely status update in internet of things monitoring systems: An age-energy tradeoff. IEEE Internet Things J.,6, 5324–5335.

    Article  Google Scholar 

  14. 14.

    Muhammad, K., Hamza, R., Ahmad, J., Lloret, J., Wang, H., & Baik, S. W. (2018). Secure surveillance framework for IoT systems using probabilistic image encryption. IEEE Transactions on Industrial Informatics.,14, 3679–3689.

    Article  Google Scholar 

  15. 15.

    Bovenzi, G., Ciuonzo, D., Persico, V., Pescapè, A., & Rossi, P.S. (2018) IoT-enabled distributed detection of a nuclear radioactive source via generalized score tests. In International symposium on signal processing and intelligent recognition systems (pp 77–91). Springer

  16. 16.

    Hasan, M., Islam, M. M., Zarif, M. I. I., & Hashem, M. M. A. (2019). Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things,7, 100059.

    Article  Google Scholar 

  17. 17.

    Khanna, A., & Kaur, S. (2019). Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Computers and Electronics in Agriculture,157, 218–231.

    Article  Google Scholar 

  18. 18.

    Xia, H., Hu, C. Q., Xiao, F., Cheng, X. G., & Pan, Z. K. (2019). An efficient social-like semantic-aware service discovery mechanism for large-scale Internet of Things. Computer Networks,152, 210–220.

    Article  Google Scholar 

  19. 19.

    Yousefi, S., Derakhshan, F., Karimipour, H., & Aghdasi, H. S. (2020). An efficient route planning model for mobile agents on the internet of things using Markov decision process. Ad Hoc Networks,98, 102053.

    Article  Google Scholar 

  20. 20.

    Goyal, N., Dave, M., & Verma, A. K. (2017). Improved data aggregation for cluster based underwater wireless sensor networks. The Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences,87, 235–245.

    Article  Google Scholar 

  21. 21.

    Kumar, K. S., & Sukumar, R. (2019). Achieving energy efficiency using novel scalar multiplication based ECC for android devices in Internet of Things environments. Cluster Computer,22, 12021–12028.

    Article  Google Scholar 

  22. 22.

    Li, Y., Huang, Y., Zhang, M., & Rajabion, L. (2019). Service selection mechanisms in the Internet of Things (IoT): a systematic and comprehensive study. Cluster Computer.

    Article  Google Scholar 

  23. 23.

    Zorgati, H., Djemaa, R. B., & Amor, I. A. B. (2019). Service discovery techniques in Internet of Things: A survey. In 2019 IEEE international conference on systems, man and cybernetics (SMC) (pp 1720–1725). IEEE.

  24. 24.

    Ferdousi, R., & Mandal, P. K. (2019,). LOAMY: A cloud-based middleware for CoAP-based IoT service discovery. In 2019 Second international conference on advanced computational and communication paradigms (ICACCP) (pp. 1–6). IEEE.

  25. 25.

    Baek, K. D., & Ko, I. Y. (2017). Spatially cohesive service discovery and dynamic service handover for distributed IoT environments. In International Conference on Web Engineering (pp. 60–78). Springer, Cham.

  26. 26.

    AlZubi, A., Alarifi, A., Al-Maitah, M., & Albasheer, O. A. (2020). Location assisted delay-less service discovery method for IoT environments. Computer and Communications,150, 405–412.

    Article  Google Scholar 

  27. 27.

    Hayyolalam, V., & Pourhaji Kazem, A. A. (2018). QoS-aware optimization of cloud service composition using symbiotic organisms search algorithm. Journal of Intelligent Procedures in Electrical Technology.,8, 29–38.

    Google Scholar 

  28. 28.

    Hayyolalam, V., & Kazem, A. A. P. (2018). Review of service composition approaches in cloud environment. In First international comprehensive competition conference on engineering sciences in Iran.

  29. 29.

    Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2018). Service composition approaches in IoT: A systematic review. The Journal of Network and Computer Applications.,120, 61–77.

    Article  Google Scholar 

  30. 30.

    Jin, H., Yao, X., & Chen, Y. (2017). Correlation-aware QoS modeling and manufacturing cloud service composition. Journal of Intelligent Manufacturing.,28, 1947–1960.

    Article  Google Scholar 

  31. 31.

    Liu, C., Zhang, Z., Zhang, S., & Han, Y. (2018, November). Runtime service composition modification supporting situational sensor data correlation. In International conference on service-oriented computing (pp. 169–181). Springer, Cham.

  32. 32.

    Alsaryrah, O., Mashal, I., & Chung, T.-Y. (2018). Bi-objective optimization for energy aware Internet of Things service composition. IEEE Access.,6, 26809–26819.

    Article  Google Scholar 

  33. 33.

    Tong, E., Chen, L., & Li, H. (2017). Energy-aware service selection and adaptation in wireless sensor networks with QoS guarantee. IEEE Transactions on Services Computing.

    Article  Google Scholar 

  34. 34.

    Kazem, A. A. P., Pedram, H., & Abolhassani, H. (2015). BNQM: A Bayesian Network based QoS Model for Grid service composition. Expert System Application,42, 6828–6843.

    Article  Google Scholar 

  35. 35.

    Hossain, M. S., Moniruzzaman, M., Muhammad, G., Ghoneim, A., & Alamri, A. (2016). Big data-driven service composition using parallel clustered particle swarm optimization in mobile environment. IEEE Transactions on Services Computing,9, 806–817.

    Article  Google Scholar 

  36. 36.

    Balakrishnan, S. M., & Sangaiah, A. K. (2015). Aspect oriented middleware for internet of things: A state-of-the art survey of service discovery approaches. International Journal of Intelligent Systems,8, 16–28.

    Article  Google Scholar 

  37. 37.

    Cabrera, C., Palade, A., & Clarke, S. (2017). An evaluation of service discovery protocols in the internet of things. In Proceedings of the symposium on applied computing (pp. 469–476).

  38. 38.

    Aziez, M., Benharzallah, S., & Bennoui, H. (2017). Service discovery for the Internet of Things: Comparison study of the approaches. In 2017 4th international conference on control, decision and information technologies (CoDIT) (pp. 0599–0604). IEEE.

  39. 39.

    Abdellatif, S., Tibermacine, O., & Bachir, A. (2019). Service discovery in the Internet of Things: A Survey. Berlin: Springer.

    Google Scholar 

  40. 40.

    Ali, A., Shamsuddin, S. M., Eassa, F. E., & Mohammed, F. (2018). Cloud service discovery and extraction: A critical review and direction for future research. In International conference of reliable information and communication technology (pp. 291–301). Springer, Cham.

  41. 41.

    Obidallah, W. J., Raahemi, B., & Ruhi, U. (2020). Clustering and association rules for web service discovery and recommendation: A systematic literature review. SN Computer Science,1, 27.

    Article  Google Scholar 

  42. 42.

    Azad, P., Navimipour, N. J., Rahmani, A. M., & Sharifi, A. (2019). The role of structured and unstructured data managing mechanisms in the Internet of things. Cluster Computer.

    Article  Google Scholar 

  43. 43.

    Hayyolalam, V., & Pourhaji Kazem, A. A. (2018). A systematic literature review on QoS-aware service composition and selection in cloud environment. The Journal of Network and Computer Applications,110, 52–74.

    Article  Google Scholar 

  44. 44.

    Pourghebleh, B., & Jafari Navimipour, N. (2019). Towards efficient data collection mechanisms in the vehicular ad hoc networks. International Journal of Communication Systems,32, e3893.

    Article  Google Scholar 

  45. 45.

    Hayyolalam, V., Pourghebleh, B., Kazem, A. A. P., & Ghaffari, A. (2019). Exploring the state-of-the-art service composition approaches in cloud manufacturing systems to enhance upcoming techniques. International Journal Advanced Manufacturing Technology.,105, 471.

    Article  Google Scholar 

  46. 46

    . Wei, Q., & Jin, Z. (2012). Service discovery for internet of things: a context-awareness perspective. In Proceedings of the fourth Asia-Pacific symposium on internetware (pp. 2–7).

  47. 47.

    Butt, T. A., Phillips, I., Guan, L., & Oikonomou, G. (2013). Adaptive and context-aware service discovery for the internet of things. In Internet of things, smart spaces, and next generation networking (pp. 36–47). Springer, Berlin.

  48. 48.

    Jo, H. J., Kwon, J. H., & Ko, I. Y. (2015). Distributed service discovery in mobile IoT environments using Hierarchical Bloom Filters. In International conference on web engineering (pp 498–514). Springer, Cham.

  49. 49.

    Rapti, E., Karageorgos, A., Houstis, C., & Houstis, E. (2017). Decentralized service discovery and selection in Internet of Things applications based on artificial potential fields. Service Oriented Computer Application,11, 75–86.

    Article  Google Scholar 

  50. 50.

    Krivic, P., Skocir, P., & Kusek, M. (2018). Agent-based approach for energy-efficient IoT services discovery and management. In KES international symposium on agent and multi-agent systems: technologies and applications (pp 57–66). Springer, Cham.

  51. 51.

    Sasirekha, S., Swamynathan, S., & Keerthana, S. (2017). A generic context-aware service discovery architecture for IoT services. In International conference on intelligent information technologies (pp. 273–283). Springer, Singapore.

  52. 52.

    Gomes, P., Cavalcante, E., Batista, T., Taconet, C., Conan, D., Chabridon, S., et al. (2019). A semantic-based discovery service for the Internet of Things. Journal of Internet Services and Applications,10(1), 1–14.

    Article  Google Scholar 

  53. 53.

    Antonini, M., Cirani, S., Ferrari, G., Medagliani, P., Picone, M., & Veltri, L. (2014). Lightweight multicast forwarding for service discovery in low-power IoT networks. In 2014 22nd International conference on software, telecommunications and computer networks (SoftCOM) (pp. 133–138). IEEE.

  54. 54.

    Cirani, S., Davoli, L., Ferrari, G., Leone, R., Medagliani, P., Picone, M., et al. (2014). A scalable and self-configuring architecture for service discovery in the internet of things. IEEE Internet Things Journal,1, 508–521.

    Article  Google Scholar 

  55. 55.

    Fredj, S. B., Boussard, M., Kofman, D., & Noirie, L. (2014). Efficient semantic-based IoT service discovery mechanism for dynamic environments. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp. 2088–2092). IEEE.

  56. 56.

    Helal, R., & ElMougy, A. (2015). An energy-efficient service discovery protocol for the IoT based on a multi-tier WSN architecture. In 2015 IEEE 40th Local Computer Networks Conference Workshops (LCN Workshops) (pp. 862–869). IEEE.

  57. 57.

    Li, J., Zaman, N., & Li, H. (2015). A decentralized locality-preserving context-aware service discovery framework for internet of things. In 2015 IEEE International Conference on Services Computing (pp. 317–323). IEEE.

  58. 58.

    Rapti, E., Houstis, C., Houstis, E., & Karageorgos, A. (2016). A bio-inspired service discovery and selection approach for IoT applications. In 2016 IEEE international conference on services computing (SCC) (pp. 868–871). IEEE.

  59. 59.

    Rui, J., & Danpeng, S. (2016). An agricultural service oriented information discovery technology for Internet of things. In 2016 International conference on smart grid and electrical automation (ICSGEA) (pp. 268–271). IEEE.

  60. 60.

    Albalas, F., Mardini, W., & Al-Soud, M. (2017). Aft: Adaptive fibonacci-based tuning protocol for service and resource discovery in the internet of things. In 2017 Second international conference on fog and mobile edge computing (FMEC) (pp. 177–182). IEEE.

  61. 61.

    Li, J., Bai, Y., Zaman, N., & Leung, V. C. M. (2017). A Decentralized trustworthy context and QoS-aware service discovery framework for the Internet of Things. IEEE Access,5, 19154–19166.

    Article  Google Scholar 

  62. 62.

    Moeini, H., Yen, I. L., & Bastani, F. (2017). Routing in IoT network for dynamic service discovery. In 2017 IEEE 23rd international conference on parallel and distributed systems (ICPADS) (pp. 360–367). IEEE.

  63. 63.

    Moeini, H., Yen, I. L., & Bastani, F. (2019). Service specification and discovery in IoT networks. In: Proceedings: 2019 IEEE International Conference on Web Services, ICWS 2019—Part of the 2019 IEEE World Congress on Services. (pp. 55–59). IEEE.

  64. 64.

    Osamy, W., Khedr, A. M., & Salim, A. (2019). ADSDA: Adaptive distributed service discovery algorithm for Internet of Things based mobile wireless sensor networks. IEEE Sensors Journal,19, 10869–10880.

    Article  Google Scholar 

  65. 66.

    Pattar, S., Kulkarni, D. S., Vala, D., Buyya, R., Venugopal, K. R., Iyengar, S. S., & Patnaik, L. M. (2019). Progressive search algorithm for service discovery in an IoT ecosystem. In 2019 international conference on Internet of Things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData) (pp. 1041–1048). IEEE.

  66. 66.

    Quevedo, J., Antunes, M., Corujo, D., Gomes, D., & Aguiar, R. L. (2016). On the application of contextual IoT service discovery in Information Centric Networks. Computer Communication,89–90, 117–127.

    Article  Google Scholar 

  67. 67.

    Reddy, M. P. K., & Babu, M. R. (2019). Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things. Cluster Computer,22, 1361–1372.

    Article  Google Scholar 

  68. 68.

    Yu, M., Yue, G., Song, J., & Pang, X. (2019). Research on intelligent city energy management based on Internet of things. Cluster Comput.,22, 8291–8300.

    Article  Google Scholar 

  69. 69.

    Zhou, S., Lin, K. J., Na, J., Chuang, C. C., & Shih, C. S. (2015). Supporting service adaptation in fault tolerant internet of things. In 2015 IEEE 8th International conference on service-oriented computing and applications (SOCA) (pp. 65–72). IEEE.

  70. 70.

    Chen, F., Fu, Z., & Yang, Z. (2019). Wind power generation fault diagnosis based on deep learning model in internet of things (IoT) with clusters. Cluster Computer,22, 14013–14025.

    Article  Google Scholar 

  71. 71.

    Badawy, M. M., Ali, Z. H., & Ali, H. A. (2019). QoS provisioning framework for service-oriented internet of things (IoT). Cluster Computing.

    Article  Google Scholar 

  72. 72.

    Stergiou, C. L., Plageras, A. P., Psannis, K. E., & Gupta, B. B. (2020). Secure machine learning scenario from big data in cloud computing via internet of things network. In Handbook of computer networks and cyber security (pp. 525–554). Springer, Cham.

  73. 73.

    Baltazar, S., Amaral, A., Barreto, L., Silva, J. P., & Gonçalves, L. (2020). The future of mobility as a service (MaaS): Driving through the internet of mobility (IoM). In Implications of mobility as a service (MaaS) in urban and rural environments: Emerging research and opportunities (pp. 247–272). IGI Global.

  74. 74.

    Jafari Kaleibar, F., & Abbaspour, M. (2020). TOPVISOR: Two-level controller-based approach for service advertisement and discovery in vehicular cloud network. International Journal Communication Systems,33, e4197.

    Article  Google Scholar 

  75. 75.

    Alwasouf, A. A., & Kumar, D. (2019). Research challenges of web service composition. In Software Engineering (pp. 681–689). Singapore: Springer.

  76. 76.

    Ciuonzo, D., Gelli, G., Pescapé, A., & Verde, F. (2019). Decision fusion rules in ambient backscatter wireless sensor networks. In 2019 IEEE 30th annual international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1–6). IEEE.

  77. 77.

    Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Syst.,89, 228–249.

    Article  Google Scholar 

  78. 78.

    Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software,95, 51–67.

    Article  Google Scholar 

  79. 79.

    Hayyolalam, V., & Kazem, A. A. P. (2020). Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Engineering Applications of Artificial Intelligence,87, 103249.

    Article  Google Scholar 

  80. 80.

    Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software,83, 80–98.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Behrouz Pourghebleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pourghebleh, B., Hayyolalam, V. & Aghaei Anvigh, A. Service discovery in the Internet of Things: review of current trends and research challenges. Wireless Netw (2020).

Download citation


  • Internet of things
  • IoT
  • Service discovery
  • SLR
  • Systematic review
  • Survey