A circularly polarized printed elliptical wide-slot antenna with high bandwidth-dimension-ratio for wireless applications


This paper outlines a simple design of a compact wideband microstrip-line fed antenna having two rotated elliptical wide-slots (EWSs). Here, both the elliptical wide-slots are placed perpendicular to each other which shows the measured 10 dB return loss bandwidth (RLBW) of about 7.78 GHz (4.94–12.72 GHz; 88.11%). The circular polarization (CP) is achieved by varying either the semi-major axis of any of the elliptical wide-slot or angle between the EWSs. The proposed antenna radiates left-handed circularly polarized (LHCP) and shows the measured axial ratio bandwidth (ARBW) of about 2.05 GHz (5.4–7.45 GHz; 31.91%) which falls completely inside the operating frequency band and hence relevant for wireless applications including an upper-frequency band of WLAN, WiMAX and several standards of IEEE 802.11 including a/h/j/n/ac/ax. The proposed antenna also achieves a high bandwidth dimension ratio (BDR) of about 1062 which along with the ARBW is the highest among the recently reported antenna structures. A peak gain of about 4.39 dBi is reported within the entire operating band while the overall size of the antenna is only \(18\,\times \,17\,{\text {mm}}^2\) (or \(0.29\lambda _o \times 0.28\lambda _o\); where \(\lambda _o\) is the wavelength corresponding to the lowest operating frequency, i.e., 4.94 GHz). The performance of the proposed antenna in terms of RLBW, ARBW, gain, and efficiency are validated experimentally which are in concordance with the simulated results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Xu, R., Li, J., Qi, Y., Guangwei, Y., & Yang, J. (2017). A design of triple-wideband triple-sense circularly polarized square slot antenna. IEEE Antennas and Wireless Propagation Letters, 16, 1763–1766. https://doi.org/10.1109/LAWP.2017.2674677.

    Article  Google Scholar 

  2. 2.

    Khidre, A., Lee, K. F., Yang, F., & Elsherbeni, A. (2010). Wideband circularly polarized E-shaped patch antenna for wireless applications [wireless corner]. IEEE Antennas and Propagation Magazine, 52(5), 219–229. https://doi.org/10.1109/MAP.2010.5687547.

    Article  Google Scholar 

  3. 3.

    Nasimuddin, Chen, Z. N., & Qing, X. (2013). Slotted microstrip antennas for circular polarization with compact size. IEEE Antennas and Propagation Magazine, 55(2), 124–137. https://doi.org/10.1109/MAP.2013.6529322.

    Article  Google Scholar 

  4. 4.

    Tewari, M., Yadav, A., & Yadav, R. P. (2017). Polarization reconfigurable circular patch antenna: Parasitic stub. In 2017 international conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1083–1086). https://doi.org/10.1109/WiSPNET.2017.8299929.

  5. 5.

    Yang, S. L. S., Lee, K. F., Kishk, A. A., & Luk, K. M. (2008). Design and study of wideband single feed, circularly polarized microstrip antennas. Progress in Electromagnetics Research, 80, 45–61. https://doi.org/10.2528/PIER07110604.

    Article  Google Scholar 

  6. 6.

    Lam, K. Y., Luk, K., Lee, K. F., Wong, H., & Ng, K. B. (2011). Small circularly polarized u-slot wideband patch antenna. IEEE Antennas and Wireless Propagation Letters, 10, 87–90. https://doi.org/10.1109/LAWP.2011.2110631.

    Article  Google Scholar 

  7. 7.

    Mondal, T., Maity, S., Ghatak, R., & Chaudhuri, S . R. Bhadra. (2018). Design and analysis of a wideband circularly polarised perturbed psi-shaped antenna. IET Microwaves, Antennas Propagation, 12(9), 1582–1586. https://doi.org/10.1049/iet-map.2017.0569.

    Article  Google Scholar 

  8. 8.

    Wang, C., Shih, M., & Chen, L. (2015). A wideband open-slot antenna with dual-band circular polarization. IEEE Antennas and Wireless Propagation Letters, 14, 1306–1309. https://doi.org/10.1109/LAWP.2015.2403572.

    Article  Google Scholar 

  9. 9.

    Kumar, M. (2014). Design and analysis of Minkowski fractal antenna using microstrip feed. International Journal of Application or Innovation in Engineering & Management,3(1), ISSN: 2319-4847.

  10. 10.

    Saraswat, K., & Harish, A. R. (2019). A coplanar waveguide fed tilted fractal inspired slot antenna for wideband circular polarization. Microwave and Optical Technology Letters, 61, 1607–1611. https://doi.org/10.1002/mop.31759.

    Article  Google Scholar 

  11. 11.

    Kumar, M., & Nath, V. (2018). Dual-band dual-polarized stacked octagonal fractal patch antenna with nonlinear manipulation. In IEEE radio and antenna days of the Indian Ocean (RADIO) (pp. 1–4). https://doi.org/10.23919/RADIO.2018.8572374.

  12. 12.

    Pan, Y. M., & Leung, K. W. (2012). Omnidirectional linearly and circularly polarized rectangular dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 60(2), 751–759. https://doi.org/10.1109/TAP.2011.2173122.

    Article  Google Scholar 

  13. 13.

    Kumar, R., & Chaudhary, R. K. (2019). Compact asymmetric cross-shaped rectangular dielectric resonator antenna for wideband circular polarization. Microwave and Optical Technology Letters, 61, 1863–1873. https://doi.org/10.1002/mop.31808.

    Article  Google Scholar 

  14. 14.

    Sharma, A., & Gangwar, R. K. (2016). Circularly polarised hybrid z-shaped cylindrical dielectric resonator antenna for multiband applications. IET Microwaves, Antennas Propagation, 10(12), 1259–1267. https://doi.org/10.1049/iet-map.2016.0035.

    Article  Google Scholar 

  15. 15.

    Kumar, R., & Chaudhary, R. K. (2018). Investigation of higher order modes excitation through F-shaped slot in rectangular dielectric resonator antenna for wideband circular polarization with broadside radiation characteristics. International Journal of RF and Microwave Computer Aided Engineering,. https://doi.org/10.1002/mmce.21281.

    Article  Google Scholar 

  16. 16.

    Kumar, A., Deegwal, J. K., & Sharma, M. M. (2018). Miniaturized wideband dual linearly and circularly polarized printed square slot antenna for multiradio wireless systems. AEU-International Journal of Electronics and Communication, 88, 44–51. https://doi.org/10.1016/j.aeue.2018.03.006.

    Article  Google Scholar 

  17. 17.

    Chen, H. N., Song, J., & Park, J. (2019). A compact circularly polarized MIMO dielectric resonator antenna over electromagnetic band-gap surface for 5G applications. IEEE Access, 7, 140889–140898. https://doi.org/10.1109/ACCESS.2019.2943880.

    Article  Google Scholar 

  18. 18.

    Altaf, A., Yang, Y., Lee, K., & Hwang, K. C. (2015). Circularly polarized spidron fractal dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 14, 1806–1809. https://doi.org/10.1109/LAWP.2015.2427373.

    Article  Google Scholar 

  19. 19.

    Tran, H. H., Hussain, N., & Le, T. T. (2019). Low-profile wideband circularly polarized MIMO antenna with polarization diversity for WLAN applications. AEU-International Journal of Electronics and Communications, 108, 172–180. https://doi.org/10.1016/j.aeue.2019.06.028.

    Article  Google Scholar 

  20. 20.

    ANSYS Electronics Desktop ver. 17.0, 2020. Retrieved May 4, 2020 https://www.ansys.com/en-in/products/electronics/ansys-electronics-desktop

  21. 21.

    Blackwell, G. R. (2017)The electronic packaging handbook Electronics Handbook Series. CRC Press, ISBN 9781420049848.

  22. 22.

    Chang, K. (2002). Chapter 2: Review of waves and transmission lines. In RF and microwave wireless systems. (Sect. 2.10.2, pp. 45–47). Wiley. ISBN 9780471224327. https://doi.org/10.1002/0471224324.ch2.

  23. 23.

    Kumar, M., & Nath, V. (2020). Circularly polarized microstrip-line-fed antenna with rotated elliptical slot serving satellite communications. Wireless Personal Communications, 110, 1443–1458. https://doi.org/10.1007/s11277-019-06794-0.

    Article  Google Scholar 

  24. 24.

    Tang, W., Chow, Y. L., & Tsang, K. F. (2004). Different microstrip line discontinuities on a single field-based equivalent circuit model. IEE Proceedings - Microwaves, Antennas and Propagation, 151(3), 256–262. https://doi.org/10.1049/ip-map:20040268.

    Article  Google Scholar 

  25. 25.

    Caloz, C., Okabe, H., Iwai, T., & Itoh, T. (2004). A simple and accurate model for microstrip structures with slotted ground plane. IEEE Microwave and Wireless Components Letters, 14(4), 133–135. https://doi.org/10.1109/LMWC.2004.828725.

    Article  Google Scholar 

  26. 26.

    Huang, Y., & Boyle, K. (2008). Chapter 5: Popular antennas. In Antennas: From theory to practice (Sect., 1st edn., pp. 130–134). Wiley. ISBN 9780470510285. https://doi.org/10.1002/9780470772911.

  27. 27.

    Sahu, N. K., Das, G., & Gangwar, R. K. (2018). Dual polarized triple-band dielectric resonator based hybrid MIMO antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letters, 60, 1033–1041. https://doi.org/10.1002/mop.31102.

    Article  Google Scholar 

  28. 28.

    Samsuzzaman, M., & Islam, M. T. (2015). A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio. Microwave and Optical Technology Letters, 57(2), 445–452. https://doi.org/10.1002/mop.28872.

    Article  Google Scholar 

Download references


The authors would like to thank G. B. Pant Engineering College, New Delhi, India for providing the testing facility at their microwave and optical communication laboratory.

Author information



Corresponding author

Correspondence to Munish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Nath, V. A circularly polarized printed elliptical wide-slot antenna with high bandwidth-dimension-ratio for wireless applications. Wireless Netw (2020). https://doi.org/10.1007/s11276-020-02399-9

Download citation


  • Elliptical wide-slot antenna
  • Microstrip-line
  • Circular polarization (CP)
  • Wireless local
  • Area network (WLAN)
  • Bandwidth dimension ratio (BDR)