Skip to main content

Advertisement

Log in

Intensive Benchmarking of D2D communication over 5G cellular networks: prototype, integrated features, challenges, and main applications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The evolving Fifth generation (5G) cellular wireless networks are envisioned to provide higher data rates, lower end-to-end latency, and lower energy consumption for devices. In order to achieve 5G requirements, a lot of new technologies are needed to operate in 5G. Device-to-device communication (D2D) is one of the key technologies provided to enhance 5G performance. D2D is direct communication between two devices without involvement of any central point (i.e. base station). It is a recommended technique to enhance the energy efficiency, throughput, latency, and spectrum utilization in cellular networks. This paper provides an intensive benchmarking of the integration of D2D communication into cellular network focusing on the potential advantages, different recent prototypes, classifications, and applications for D2D technology. Finally, the paper addresses the D2D related main topics and indicates the major possible challenges that face most researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., et al. (2017). 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications,35(6), 1201–1221.

    Google Scholar 

  2. Kazi, B. U., & Wainer, G. A. (2019). Next generation wireless cellular networks: Ultra-dense multi-tier and multi-cell cooperation perspective. Wireless Networks,25(4), 2041–2064.

    Google Scholar 

  3. Jameel, F., Hamid, Z., Jabeen, F., Zeadally, S., & Javed, M. A. (2018). A survey of device-to-device communications: Research issues and challenges. IEEE Communications Surveys & Tutorials,20(3), 2133–2168.

    Google Scholar 

  4. Lien, S. Y., Chien, C. C., Tseng, F. M., & Ho, T. C. (2016). 3GPP device-to-device communications for beyond 4G cellular networks. IEEE Communications Magazine,54(3), 29–35.

    Google Scholar 

  5. Nardini, G., Stea, G., Virdis, A., Sabella, D., & Caretti, M. (2017). Resource allocation for network-controlled device-to-device communications in LTE-Advanced. Wireless Networks,23(3), 787–804.

    Google Scholar 

  6. Mach, P., Becvar, Z., & Vanek, T. (2015). In-band device-to-device communication in OFDMA cellular networks: A survey and challenges. IEEE Communications Surveys & Tutorials,17(4), 1885–1922.

    Google Scholar 

  7. Chen, Z., Zhao, H., Cao, Y., & Jiang, T. (2015). Load balancing for D2D-based relay communications in heterogeneous network. In 2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (pp. 23–29). IEEE.

  8. Pham-Thi, H., Hoang-Van, H., & Miyoshi, T. (2015). Correlating objective factors with video quality experienced by end users on P2PTV. International Journal of Computer Networks and Communications,7(3), 59–73.

    Google Scholar 

  9. Chen, Y., Zhang, B., Liu, Y., & Zhu, W. (2013). Measurement and modeling of video watching time in a large-scale internet video-on-demand system. IEEE Transactions on Multimedia,15(8), 2087–2098.

    Google Scholar 

  10. Misic, J. B., & Misic, V. B. (2017). Adapting LTE/LTE-A to M2M and D2D communications. IEEE Network,31(3), 63–69.

    Google Scholar 

  11. Virdis, A., Vallati, C., Nardini, G., Tanganelli, G., Stea, G., & Mingozzi, E. (2018). D2D communications for large-scale fog platforms: Enabling direct M2M interactions. IEEE Vehicular Technology Magazine,13(2), 24–33.

    Google Scholar 

  12. Ali, K., Nguyen, H. X., Vien, Q. T., & Shah, P. (2015). Disaster management communication networks: Challenges and architecture design. In 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops) (pp. 537–542). IEEE.

  13. Yaacoub, E., & Kubbar, O. (2012). Energy-efficient device-to-device communications in LTE public safety networks. In 2012 IEEE Globecom Workshops (pp. 391–395). IEEE.

  14. Ali, K., Nguyen, H. X., Shah, P., Vien, Q. T., & Bhuvanasundaram, N. (2016). Architecture for public safety network using D2D communication. In 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 206–211). IEEE.

  15. Ali, K., Nguyen, H. X., Vien, Q. T., Shah, P., & Chu, Z. (2018). Disaster management using D2D communication with power transfer and clustering techniques. IEEE Access,6, 14643–14654.

    Google Scholar 

  16. Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia, R., et al. (2013). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. IEEE/ACM Transactions on Networking (ToN),21(4), 1215–1228.

    Google Scholar 

  17. Bao, X., Lin, Y., Lee, U., Rimac, I., & Choudhury, R. R. (2013). Dataspotting: Exploiting naturally clustered mobile devices to offload cellular traffic. In 2013 Proceedings IEEE INFOCOM (pp. 420–424). IEEE.

  18. Nishiyama, H., Ito, M., & Kato, N. (2014). Relay-by-smartphone: Realizing multihop device-to-device communications. IEEE Communications Magazine,52(4), 56–65.

    Google Scholar 

  19. Devos, M., Ometov, A., Mäkitalo, N., Aaltonen, T., Andreev, S., & Koucheryavy, Y. (2016). D2D communications for mobile devices: Technology overview and prototype implementation. In 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (pp. 124–129). IEEE.

  20. Raghavan, V., Partyka, A., Akhoondzadeh-Asl, L., Tassoudji, M. A., Koymen, O. H., & Sanelli, J. (2017). Millimeter wave channel measurements and implications for PHY layer design. IEEE Transactions on Antennas and Propagation,65(12), 6521–6533.

    Google Scholar 

  21. Zhang, J., Ge, X., Li, Q., Guizani, M., & Zhang, Y. (2016). 5G millimeter-wave antenna array: Design and challenges. IEEE Wireless Communications,24(2), 106–112.

    Google Scholar 

  22. Bahadori, N., Namvar, N., Kelley, B., & Homaifar, A. (2018). Device-to-device communications in the millimeter wave band: A novel distributed mechanism. In 2018 Wireless Telecommunications Symposium (WTS) (pp. 1–6). IEEE.

  23. Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine,53(1), 209–215.

    Google Scholar 

  24. Araniti, G., Campolo, C., Condoluci, M., Iera, A., & Molinaro, A. (2013). LTE for vehicular networking: A survey. IEEE Communications Magazine,51(5), 148–157.

    Google Scholar 

  25. Sun, W., Ström, E. G., Brännström, F., Sou, K. C., & Sui, Y. (2015). Radio resource management for D2D-based V2V communication. IEEE Transactions on Vehicular Technology,65(8), 6636–6650.

    Google Scholar 

  26. Liang, L., Li, G. Y., & Xu, W. (2017). Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications,65(7), 3186–3197.

    Google Scholar 

  27. Liang, L., Xie, S., Li, G. Y., Ding, Z., & Yu, X. (2018). Graph-based resource sharing in vehicular communication. IEEE Transactions on Wireless Communications,17(7), 4579–4592.

    Google Scholar 

  28. Wang, D., Chen, D., Song, B., Guizani, N., Yu, X., & Du, X. (2018). From IoT to 5G I-IoT: The next generation IoT-based intelligent algorithms and 5G technologies. IEEE Communications Magazine,56(10), 114–120.

    Google Scholar 

  29. Salem, M. A., Tarrad, I. F., Youssef, M. I., & El-Kader, S. M. A. (2019). QoS categories activeness-aware adaptive EDCA algorithm for dense IOT networks. arXiv preprint arXiv:1906.03093.

  30. Chernyshev, M., Baig, Z., Bello, O., & Zeadally, S. (2017). Internet of Things (IoT): Research, simulators, and testbeds. IEEE Internet of Things Journal,5(3), 1637–1647.

    Google Scholar 

  31. Bello, O., & Zeadally, S. (2014). Intelligent device-to-device communication in the internet of things. IEEE Systems Journal,10(3), 1172–1182.

    Google Scholar 

  32. Li, Y., Liang, Y., Liu, Q., & Wang, H. (2018). Resources allocation in multicell D2D communications for internet of things. IEEE Internet of Things Journal,5(5), 4100–4108.

    Google Scholar 

  33. Liu, Y. (2016). Optimal mode selection in D2D-enabled multibase station systems. IEEE Communications Letters,20(3), 470–473.

    Google Scholar 

  34. Yu, G., Xu, L., Feng, D., Yin, R., Li, G. Y., & Jiang, Y. (2014). Joint mode selection and resource allocation for device-to-device communications. IEEE Transactions on Communications,62(11), 3814–3824.

    Google Scholar 

  35. Gao, C., Sheng, X., Tang, J., Zhang, W., Zou, S., & Guizani, M. (2014). Joint mode selection, channel allocation and power assignment for green device-to-device communications. In 2014 IEEE International Conference on Communications (ICC) (pp. 178–183). IEEE.

  36. Della Penda, D., Fu, L., & Johansson, M. (2015). Mode selection for energy efficient D2D communications in dynamic TDD systems. In 2015 IEEE International Conference on Communications (ICC) (pp. 5404–5409). IEEE.

  37. Della Penda, D., Fu, L., & Johansson, M. (2016). Energy efficient D2D communications in dynamic TDD systems. IEEE Transactions on Communications,65(3), 1260–1273.

    Google Scholar 

  38. Han, M. H., Kim, B. G., & Lee, J. W. (2012). Subchannel and transmission mode scheduling for D2D communication in OFDMA networks. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). IEEE.

  39. Lei, L., Shen, X. S., Dohler, M., Lin, C., & Zhong, Z. (2014). Queuing models with applications to mode selection in device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications,13(12), 6697–6715.

    Google Scholar 

  40. Yao, M., Sohul, M., Marojevic, V., & Reed, J. H. (2019). Artificial intelligence defined 5G radio access networks. IEEE Communications Magazine,57(3), 14–20.

    Google Scholar 

  41. Wang, X., Li, X., & Leung, V. C. (2015). Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access,3, 1379–1391.

    Google Scholar 

  42. Khan, M., Alam, M., Moullec, Y., & Yaacoub, E. (2017). Throughput-aware cooperative reinforcement learning for adaptive resource allocation in device-to-device communication. Future Internet,9(4), 72.

    Google Scholar 

  43. Nie, S., Fan, Z., Zhao, M., Gu, X., & Zhang, L. (2016). Q-learning based power control algorithm for D2D communication. In 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1–6). IEEE.

  44. Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access,5, 11727–11758.

    Google Scholar 

  45. Gandotra, P., & Jha, R. K. (2017). A survey on green communication and security challenges in 5G wireless communication networks. Journal of Network and Computer Applications,96, 39–61.

    Google Scholar 

  46. Datsika, E., Antonopoulos, A., Zorba, N., & Verikoukis, C. (2016). Green cooperative device-to-device communication: A social-aware perspective. IEEE Access,4, 3697–3707.

    Google Scholar 

  47. Kai, C., Li, H., Xu, L., Li, Y., & Jiang, T. (2018). Energy-efficient device-to-device communications for green smart cities. IEEE Transactions on Industrial Informatics,14(4), 1542–1551.

    Google Scholar 

  48. Zhang, H., Liao, Y., & Song, L. (2017). D2D-U: Device-to-device communications in unlicensed bands for 5G system. IEEE Transactions on Wireless Communications,16(6), 3507–3519.

    Google Scholar 

  49. Nguyen, P., Wijesinghe, P., Palipana, R., Lin, K., & Vasic, D. (2014). Network-assisted device discovery for LTE-based D2D communication systems. In 2014 IEEE international conference on communications (ICC) (pp. 3160–3165). IEEE.

  50. Jung, S., & Chang, S. (2014). A discovery scheme for device-to-device communications in synchronous distributed networks. In 16th International Conference on Advanced Communication Technology (pp. 815–819). IEEE.

  51. Lu, Q., Miao, Q., Fodor, G., & Brahmi, N. (2014). Clustering schemes for D2D communications under partial/no network coverage. In 2014 IEEE 79th Vehicular Technology Conference (VTC Spring) (pp. 1–5). IEEE.

  52. Chen, H. Y., Shih, M. J., & Wei, H. Y. (2015). Handover mechanism for device-to-device communication. In 2015 IEEE Conference on Standards for Communications and Networking (CSCN) (pp. 72–77). IEEE.

  53. Yilmaz, O. N., Li, Z., Valkealahti, K., Uusitalo, M. A., Moisio, M., Lundén, P., & Wijting, C. (2014). Smart mobility management for D2D communications in 5G networks. In 2014 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 219–223). IEEE.

  54. Radwan, A., & Rodriguez, J. (Eds.). (2014). Energy efficient smart phones for 5G networks. Berlin: Springer.

    Google Scholar 

  55. Peng, T., Lu, Q., Wang, H., Xu, S., & Wang, W. (2009). Interference avoidance mechanisms in the hybrid cellular and device-to-device systems. In 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 617–621). IEEE.

  56. Xu, S., Wang, H., Peng, T., & Huang, Q. (2010). Effective labeled time slots based D2D transmission in cellular downlink spectrums. In 2010 IEEE 71st Vehicular Technology Conference (pp. 1–5). IEEE.

  57. Gu, J., Bae, S. J., Choi, B. G., & Chung, M. Y. (2011). Dynamic power control mechanism for interference coordination of device-to-device communication in cellular networks. In 2011 Third International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 71–75). IEEE.

  58. Han, T., Yin, R., Xu, Y., & Yu, G. (2012). Uplink channel reusing selection optimization for device-to-device communication underlaying cellular networks. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC) (pp. 559–564). IEEE.

  59. Peng, B., Hu, C., Peng, T., & Wang, W. (2012). Optimal resource allocation for multi-D2D links underlying OFDMA-based communications. In 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing (pp. 1–4). IEEE.

  60. Zhu, X., Wen, S., Cao, G., Zhang, X., & Yang, D. (2012). QoS-based resource allocation scheme for device-to-device (D2D) radio underlaying cellular networks. In 2012 19th International Conference on Telecommunications (ICT) (pp. 1–6). IEEE.

  61. Duong, Q., Shin, Y., & Shin, O. S. (2013). Resource allocation scheme for device-to-device communications underlaying cellular networks. In Proceedings of International Conference ComManTel, Ho Chi Minh City, Vietnam (pp. 66–69).

  62. Chae, H. S., Gu, J., Choi, B. G., & Chung, M. Y. (2011). Radio resource allocation scheme for device-to-device communication in cellular networks using fractional frequency reuse. In The 17th Asia Pacific Conference on Communications (pp. 58–62). IEEE.

  63. Hajiaghayi, M., Wijting, C., Ribeiro, C., & Hajiaghayi, M. T. (2014). Efficient and practical resource block allocation for LTE-based D2D network via graph coloring. Wireless Networks,20(4), 611–624.

    Google Scholar 

  64. Yu, C. H., Doppler, K., Ribeiro, C. B., & Tirkkonen, O. (2011). Resource sharing optimization for device-to-device communication underlaying cellular networks. IEEE Transactions on Wireless Communications,10(8), 2752–2763.

    Google Scholar 

  65. Yu, C. H., Tirkkonen, O., Doppler, K., & Ribeiro, C. (2009). Power optimization of device-to-device communication underlaying cellular communication. In 2009 IEEE International Conference on Communications (pp. 1–5). IEEE.

  66. Yu, C. H., Doppler, K., Ribeiro, C., & Tirkkonen, O. (2009). Performance impact of fading interference to device-to-device communication underlaying cellular networks. In 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 858–862). IEEE.

  67. Hussein, H. H., & El-Kader, S. M. A. (2017). Enhancing signal to noise interference ratio for device to device technology in 5G applying mode selection technique. In 2017 International Conference on Advanced Control Circuits Systems (ACCS) Systems & 2017 International Conference on New Paradigms in Electronics & Information Technology (PEIT) (pp. 187–192). IEEE.

  68. Xiang, S., Quan, Q., Peng, T., & Wang, W. (2012). Performance analysis of cooperative mode selection in hybrid D2D and IMT-advanced network. In 7th International Conference on Communications and Networking in China (pp. 717–721). IEEE.

  69. Omorinoye, A. A., Vien, Q. T., Le, T. A., & Shah, P. (2019). On the resource allocation for D2D underlaying uplink cellular networks. In 26th International Conference on Telecommunications (ICT), 08–10 Apr 2019, Hanoi, Vietnam.

  70. Jung, M., Hwang, K., & Choi, S. (2012). Joint mode selection and power allocation scheme for power-efficient device-to-device (D2D) communication. In 2012 IEEE 75th Vehicular Technology Conference (VTC Spring) (pp. 1–5). IEEE.

  71. Tsolkas, D., Liotou, E., Passas, N., & Merakos, L. (2012). A graph-coloring secondary resource allocation for D2D communications in LTE networks. In 2012 IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 56–60). IEEE.

  72. Wang, F., Song, L., Han, Z., Zhao, Q., & Wang, X. (2013). Joint scheduling and resource allocation for device-to-device underlay communication. In 2013 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 134–139). IEEE.

  73. Wang, M., & Yan, Z. (2017). A survey on security in D2D communications. Mobile Networks and Applications,22(2), 195–208.

    Google Scholar 

  74. Alam, M., Yang, D., Rodriguez, J., & Abd-Alhameed, R. A. (2014). Secure device-to-device communication in LTE-A. IEEE Communications Magazine,52(4), 66–73.

    Google Scholar 

  75. Zhang, A., Wang, L., Ye, X., & Lin, X. (2016). Light-weight and robust security-aware D2D-assist data transmission protocol for mobile-health systems. IEEE Transactions on Information Forensics and Security,12(3), 662–675.

    Google Scholar 

  76. Abualhaol, I., & Muegge, S. (2016). Securing D2D wireless links by continuous authenticity with legitimacy patterns. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 5763–5771). IEEE.

  77. Sedidi, R., & Kumar, A. (2016, March). Key exchange protocols for secure device-to-device (D2D) communication in 5G. In 2016 Wireless Days (WD) (pp. 1–6). IEEE.

  78. Pizzi, S., Suraci, C., Militano, L., Orsino, A., Molinaro, A., Iera, A., et al. (2018). Enabling trustworthy multicast wireless services through D2D communications in 5G networks. Future Internet,10(7), 66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan H. Hussein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, H.H., Elsayed, H.A. & Abd El-kader, S.M. Intensive Benchmarking of D2D communication over 5G cellular networks: prototype, integrated features, challenges, and main applications. Wireless Netw 26, 3183–3202 (2020). https://doi.org/10.1007/s11276-019-02131-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02131-2

Keywords

Navigation