Skip to main content
Log in

Interference and Resource management strategy for handover in femtocells

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Interference in femtocells due to neighboring femtocells and macrocells is a major issue of two-tier networks. Handover should be made to reduce interference, if and only if, when resources are available. Otherwise, it will further degrade network performance. Resource management should be made in an efficient manner that will not cause interference between macrocells and neighboring femtocells. Since distance between macro base station (MBS) and femto access point (FAP) is short, therefore, it is very hard to sustain low handover probability when macro user moves from MBS to FAP. We proposed handover algorithm for uplink co-channel interference mitigation that will make handover decision on the basis of time-to-stay and signal to interference plus noise ratio thresholds along with efficient resource management mechanism to reduce number of handovers and also resolve interference problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5 g wireless communication networks. IEEE Communications Magazine,52(2), 122–130.

    Article  Google Scholar 

  2. Aijaz, A., Aghvami, H., & Amani, M. (2013). A survey on mobile data offloading: Technical and business perspectives. IEEE Wireless Communications,20(2), 104–112.

    Article  Google Scholar 

  3. Cisco Visual Networking Index. (2013). Global mobile data traffic forecast update, 2012–2017.

  4. Hoadley, J., & Maveddat, P. (2012). Enabling small cell deployment with hetnet. IEEE Wireless Communications,19(2), 4–5.

    Article  Google Scholar 

  5. Ludovic Fournier. Lte. (2011).

  6. Kim, R. Y., Kwak, J. S., & Etemad, K. (2009). WiMAX femtocell: Requirements, challenges, and solutions. IEEE Communications Magazine,47(9), 84–91.

    Article  Google Scholar 

  7. Gelabert, X., Legg, P., & Qvarfordt, C. (2013). Small cell densification requirements in high capacity future cellular networks. In IEEE international conference on communications workshops (ICC) (pp. 1112–1116). IEEE.

  8. Claussen, H., Ho, L. T. W., & Samuel, L. G. (2008). An overview of the femtocell concept. Bell Labs Technical Journal,13(1), 221–245.

    Article  Google Scholar 

  9. Ghosh, A., Mangalvedhe, N., Ratasuk, R., Mondal, B., Cudak, M., Visotsky, E., et al. (2012). Heterogeneous cellular networks: From theory to practice. IEEE Communications Magazine,50(6), 54–64.

    Article  Google Scholar 

  10. Jeong, B., Shin, S., Jang, I., Sung, N. W., & Yoon, H. (2011). A smart handover decision algorithm using location prediction for hierarchical macro/femto-cell networks. In IEEE on vehicular technology conference (VTC Fall) (Vol. 5, pp. 1). IEEE.

  11. Jansen, T., Balan, I., Turk, J., Moerman, I., & Kurner, T. (2010). Handover parameter optimization in LTE self-organizing networks. In IEEE on vehicular technology conference fall (VTC 2010-Fall) (Vol. 5, p. 72). IEEE.

  12. Wu, S. J. (2011). A new handover strategy between femtocell and macrocell for lte-based network. In 4th International conference on Ubi-media computing (U-Media) (pp. 203–208). IEEE.

  13. Hossain, M. R., Real, A. Z. M. A. H., & Rahman, A. (2015). Handover management in heterogeneous network. In 18th International conference on computer and information technology (ICCIT) (pp. 87–92). IEEE.

  14. Sagar, E. L., & Bhadla, M. (2015). A survey of handover mechanism with mobility management in femtocell & macrocell for LTE. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. https://doi.org/10.15662/IJAREEIE.2015.0411070.

  15. de Lima, C. H. M., Ghaboosi, K., Bennis, M., MacKenzie, A. B., & Latva-aho, M. (2010). A stochastic association mechanism for macro-to-femtocell handover. In Conference record of the forty fourth ASILOMAR conference on signals, systems and computers (ASILOMAR) (pp. 1570–1574). IEEE.

  16. Lee, J. W., & Yoo, S. J. (2016). Probabilistic path and data capacity based handover decision for hierarchical macro-and femtocell networks. Mobile Information Systems. https://doi.org/10.1155/2016/4218979.

    Article  Google Scholar 

  17. Youm, S., Jung, J.-J., Ko, Y., & Kim, E.-J. (2015). Resource efficient handover strategy for lte femtocells. International Journal of Distributed Sensor Networks,11(9), 962837.

    Article  Google Scholar 

  18. Gwo-Jong, Yu., & Khac, H. N. (2016). A novel downlink interference management mechanism for two-tier OFDMA femtocell networks. Journal of Advances in Computer Networks,4(2), 80–85.

    Google Scholar 

  19. Shin, D. K., Choi, W., & Yu, T. (2013). Statistically controlled opportunistic resource block sharing for femto cell networks. Journal of Communications and Networks,15(5), 469–475.

    Article  Google Scholar 

  20. Chen, G., Zheng, J., & Shen, L. (2016). A preset threshold based cross-tier handover algorithm for uplink co-channel interference mitigation in two-tier femtocell networks. Wireless Networks,22(6), 1819–1835.

    Article  Google Scholar 

  21. Yusof, A. L., Salihin, S. S., Ya’acob, N., & Ali, M. T. (2013). Performance analysis of handover strategy in femtocell network. Journal of Communications,8(11), 724–729.

    Article  Google Scholar 

  22. Anas, M., Calabrese, F. D., Mogensen, P. E., Rosa, C., & Pedersen, K. I. (2007). Performance evaluation of received signal strength based hard handover for UTRAN LTE. In IEEE 65th vehicular technology conferenceon VTC2007-spring. (pp. 1046–1050). IEEE.

  23. Widjaja, D., & Uthansakul, P. (2016). Optimum threshold for velocity considered-SINR based vertical handoff decision in HetNet. ECTI Transactions on Electrical Engineering, Electronics, and Communications,14(2), 65–72.

    Google Scholar 

  24. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine,46(9), 59–67.

    Article  Google Scholar 

  25. Lopez-Perez, D., Ladanyi, A., Juttner, A., & Zhang, J. (2009). Ofdma femtocells: A self-organizing approach for frequency assignment. In IEEE 20th international symposium on personal, indoor and mobile radio communications (pp. 2202–2207). IEEE.

  26. Bar-Yehuda, R., Censor-Hillel, K., Ghaffari, M., & Schwartzman, G. (2017). Distributed approximation of maximum independent set and maximum matching. arXiv preprint arXiv:1708.00276.

Download references

Acknowledgements

The funding was provided by National University of Sciences and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madiha Rasheed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, M., Ajmal, S. Interference and Resource management strategy for handover in femtocells. Wireless Netw 26, 2741–2754 (2020). https://doi.org/10.1007/s11276-019-02027-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02027-1

Keywords

Navigation