Performance optimization for energy harvesting cognitive cooperative networks with imperfect spectrum sensing

Article
  • 12 Downloads

Abstract

In this paper, considering imperfect spectrum sensing in a cognitive cooperative system, we study the performance optimization for throughput maximization of secondary user (SU) and average delay minimization under maximum delay constraint of primary user (PU) with harvested energy from radio frequency signal of active PU by cooperative SU. We use a one-dimension linear search method to decompose the two optimization problems due to the non-convexity of the original optimization. We prove that the above maximization and minimization have same forms of solution under the same constraints. Simulation results indicate that the throughput performance of SU is higher than that of traditional cognitive system.

Keywords

Cognitive cooperative network Performance optimization Imperfect spectrum sensing Scheduling probability RF energy harvesting 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61501202.

References

  1. 1.
    Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  2. 2.
    Zhang, T., Chen, W., Han, Z., & Cao, Z. G. (2014). Hierarchic power allocation for spectrum sharing in OFDM-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 63(8), 4077–4091.CrossRefGoogle Scholar
  3. 3.
    Kang, X., Liang, Y.-C., Garg, H. K., & Zhang, L. (2009). Sensing-based spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(8), 4649–4654.CrossRefGoogle Scholar
  4. 4.
    Azarian, K., El Gamal, H., & Schniter, P. (2005). On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 51(12), 4152–4172.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ali, A., Ejaz, A., Jabbar, M., Hameed, K., Mushtag, Z., Akhter, T., et al. (2016). Performance analysis of AF, DF and DtF relaying techniques for enhanced cooperative communication. In Six international conference on innovative computing technology (INTECH) (pp. 594–599), Dublin, Ireland.Google Scholar
  6. 6.
    Omar, M. S., Naqvi, S. A. R., Kabir, S. H., & Hassan, S. A. (2017). An experimental evaluation of a cooperative communication-based smart metering data acquisition system. IEEE Transactions on Industrial Information, 13(1), 399–408.CrossRefGoogle Scholar
  7. 7.
    Ashour, M., El-Sherif, A. A., Elbatt, T., & Mohamed, A. (2015). Cognitive radio networks with probabilistic relaying: Stable throughput and delay tradeoffs. IEEE Transactions on Communications, 63(11), 4002–4014.CrossRefGoogle Scholar
  8. 8.
    Krikidis, I., Devroye, N., & Thompson, J. S. (2010). Stability analysis for cognitive radio with multi-access primary transmission. IEEE Transactions on Wireless Communications, 9(1), 72–77.CrossRefGoogle Scholar
  9. 9.
    Wang, N., & Gulliver, T. A. (2015). Queue-aware transmission scheduling for cooperative wireless communications. IEEE Transactions on Communications, 63(4), 1149–1161.CrossRefGoogle Scholar
  10. 10.
    Rong, B., & Ephremides, A. (2012). Cooperative access in wireless networks: Stable throughput and delay. IEEE Transactions on Information Theory, 58(9), 5890–5907.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Elmahdy, A. M., El-Keyi, A., Elbatt, T., & Seddik, K. G. (2017). Optimizing cooperative cognitive radio networks performance with primary QoS provisioning. IEEE Transactions on Communications, 65(4), 1451–1463.CrossRefGoogle Scholar
  12. 12.
    Salman, M., El-Keyi, A., Nafie, M., & Hasna, M. (2016). Novel cooperative policy for cognitive radio networks: Stability region and delay analysis. In IEEE wireless communications and networking conference (WCNC) (pp. 1–7), Doha, Qatar.Google Scholar
  13. 13.
    Kulkarn, K., & Banerjee, A. (2016). On stable throughput of cognitive radio networks with cooperating secondary users. IEEE Transactions on Communications, 64(10), 4097–4110.Google Scholar
  14. 14.
    Zhang, T., Chen, W., Han, Z., & Cao, Z. G. (2015). A cross-layer perspective on energy-harvesting-aided green communications over fading channels. IEEE Transactions on Vehicular Technology, 64(4), 1519–1534.CrossRefGoogle Scholar
  15. 15.
    Zhang, J. H., Nguyen, N. P., Zhang, J. Q., Palacios, E. G., & Le, N. P. (2016). Impact of primary networks on the performance of energy harvesting cognitive radio networks. IET Communications, 10(18), 2559–2566.CrossRefGoogle Scholar
  16. 16.
    Yan, J., & Liu, Y. (2016). Dynamic energy harvesting in cooperative cognitive radio networks. In IEEE Globecom Workshops (pp. 1–6), Washington, DC, USA.Google Scholar
  17. 17.
    Hoang, D. T., Niyato, D. T., Wang, P., & Kim, D. I. (2015). Performance optimization for cooperative multiuser cognitive radio networks with RF energy harvesting capability. IEEE Transactions on Wireless Communications, 14(7), 3614–3629.CrossRefGoogle Scholar
  18. 18.
    Ashraf, M., Shahid, A., Jang, J. W., & Li, K. G. (2017). Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks. IEEE Access, 5, 283–294.CrossRefGoogle Scholar
  19. 19.
    Shafie, A. E., & Sultan, A. (2013). Optimal random access for a cognitive radio terminal with energy harvesting capability. IEEE Communication Letters, 17(6), 1128–1131.CrossRefGoogle Scholar
  20. 20.
    Lu, Y., Wang, W., Zhang, Z. Y., & Huang, A. P. (2014). Random access for a cognitive radio transmitter with RF energy harvesting. In IEEE global communications conference (GLOBECOM), Austin, USA.  https://doi.org/10.1109/GLOCOM.2014.7036927.
  21. 21.
    Kleimrock, L. (1975). Queueing systems: Theory (Vol. 1). New York: Wiley-Interscience.Google Scholar
  22. 22.
    Krikidis, I., Charalambous, T., & Thompson, J. S. (2012). Stability analysis and power optimization for energy harvesting cooperative networks. IEEE Signal Processing Letters, 19(1), 20–23.CrossRefGoogle Scholar
  23. 23.
    Ashour, M., Butt, M. M., Mohamed, A., Elbatt, T., & Krunz, M. (2016). Energy-aware cooperative wireless networks with multiple cognitive users. IEEE Transactions on Communications, 64(8), 3233–3245.CrossRefGoogle Scholar
  24. 24.
    Loynes, R. M. (1962). The stability of a queue with non-independent inter-arrival and service times. Mathematical Proceedings of the Cambridge Philosophical Society, 58(3), 497–520.CrossRefMATHGoogle Scholar
  25. 25.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimizition. Cambridge: Cambridge University Press.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Communication EngineeringJilin UniversityChangchunChina

Personalised recommendations