Skip to main content

Advertisement

Log in

Performance optimization for energy harvesting cognitive cooperative networks with imperfect spectrum sensing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, considering imperfect spectrum sensing in a cognitive cooperative system, we study the performance optimization for throughput maximization of secondary user (SU) and average delay minimization under maximum delay constraint of primary user (PU) with harvested energy from radio frequency signal of active PU by cooperative SU. We use a one-dimension linear search method to decompose the two optimization problems due to the non-convexity of the original optimization. We prove that the above maximization and minimization have same forms of solution under the same constraints. Simulation results indicate that the throughput performance of SU is higher than that of traditional cognitive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Zhang, T., Chen, W., Han, Z., & Cao, Z. G. (2014). Hierarchic power allocation for spectrum sharing in OFDM-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 63(8), 4077–4091.

    Article  Google Scholar 

  3. Kang, X., Liang, Y.-C., Garg, H. K., & Zhang, L. (2009). Sensing-based spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(8), 4649–4654.

    Article  Google Scholar 

  4. Azarian, K., El Gamal, H., & Schniter, P. (2005). On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 51(12), 4152–4172.

    Article  MathSciNet  Google Scholar 

  5. Ali, A., Ejaz, A., Jabbar, M., Hameed, K., Mushtag, Z., Akhter, T., et al. (2016). Performance analysis of AF, DF and DtF relaying techniques for enhanced cooperative communication. In Six international conference on innovative computing technology (INTECH) (pp. 594–599), Dublin, Ireland.

  6. Omar, M. S., Naqvi, S. A. R., Kabir, S. H., & Hassan, S. A. (2017). An experimental evaluation of a cooperative communication-based smart metering data acquisition system. IEEE Transactions on Industrial Information, 13(1), 399–408.

    Article  Google Scholar 

  7. Ashour, M., El-Sherif, A. A., Elbatt, T., & Mohamed, A. (2015). Cognitive radio networks with probabilistic relaying: Stable throughput and delay tradeoffs. IEEE Transactions on Communications, 63(11), 4002–4014.

    Article  Google Scholar 

  8. Krikidis, I., Devroye, N., & Thompson, J. S. (2010). Stability analysis for cognitive radio with multi-access primary transmission. IEEE Transactions on Wireless Communications, 9(1), 72–77.

    Article  Google Scholar 

  9. Wang, N., & Gulliver, T. A. (2015). Queue-aware transmission scheduling for cooperative wireless communications. IEEE Transactions on Communications, 63(4), 1149–1161.

    Article  Google Scholar 

  10. Rong, B., & Ephremides, A. (2012). Cooperative access in wireless networks: Stable throughput and delay. IEEE Transactions on Information Theory, 58(9), 5890–5907.

    Article  MathSciNet  Google Scholar 

  11. Elmahdy, A. M., El-Keyi, A., Elbatt, T., & Seddik, K. G. (2017). Optimizing cooperative cognitive radio networks performance with primary QoS provisioning. IEEE Transactions on Communications, 65(4), 1451–1463.

    Article  Google Scholar 

  12. Salman, M., El-Keyi, A., Nafie, M., & Hasna, M. (2016). Novel cooperative policy for cognitive radio networks: Stability region and delay analysis. In IEEE wireless communications and networking conference (WCNC) (pp. 1–7), Doha, Qatar.

  13. Kulkarn, K., & Banerjee, A. (2016). On stable throughput of cognitive radio networks with cooperating secondary users. IEEE Transactions on Communications, 64(10), 4097–4110.

    Google Scholar 

  14. Zhang, T., Chen, W., Han, Z., & Cao, Z. G. (2015). A cross-layer perspective on energy-harvesting-aided green communications over fading channels. IEEE Transactions on Vehicular Technology, 64(4), 1519–1534.

    Article  Google Scholar 

  15. Zhang, J. H., Nguyen, N. P., Zhang, J. Q., Palacios, E. G., & Le, N. P. (2016). Impact of primary networks on the performance of energy harvesting cognitive radio networks. IET Communications, 10(18), 2559–2566.

    Article  Google Scholar 

  16. Yan, J., & Liu, Y. (2016). Dynamic energy harvesting in cooperative cognitive radio networks. In IEEE Globecom Workshops (pp. 1–6), Washington, DC, USA.

  17. Hoang, D. T., Niyato, D. T., Wang, P., & Kim, D. I. (2015). Performance optimization for cooperative multiuser cognitive radio networks with RF energy harvesting capability. IEEE Transactions on Wireless Communications, 14(7), 3614–3629.

    Article  Google Scholar 

  18. Ashraf, M., Shahid, A., Jang, J. W., & Li, K. G. (2017). Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks. IEEE Access, 5, 283–294.

    Article  Google Scholar 

  19. Shafie, A. E., & Sultan, A. (2013). Optimal random access for a cognitive radio terminal with energy harvesting capability. IEEE Communication Letters, 17(6), 1128–1131.

    Article  Google Scholar 

  20. Lu, Y., Wang, W., Zhang, Z. Y., & Huang, A. P. (2014). Random access for a cognitive radio transmitter with RF energy harvesting. In IEEE global communications conference (GLOBECOM), Austin, USA. https://doi.org/10.1109/GLOCOM.2014.7036927.

  21. Kleimrock, L. (1975). Queueing systems: Theory (Vol. 1). New York: Wiley-Interscience.

    Google Scholar 

  22. Krikidis, I., Charalambous, T., & Thompson, J. S. (2012). Stability analysis and power optimization for energy harvesting cooperative networks. IEEE Signal Processing Letters, 19(1), 20–23.

    Article  Google Scholar 

  23. Ashour, M., Butt, M. M., Mohamed, A., Elbatt, T., & Krunz, M. (2016). Energy-aware cooperative wireless networks with multiple cognitive users. IEEE Transactions on Communications, 64(8), 3233–3245.

    Article  Google Scholar 

  24. Loynes, R. M. (1962). The stability of a queue with non-independent inter-arrival and service times. Mathematical Proceedings of the Cambridge Philosophical Society, 58(3), 497–520.

    Article  Google Scholar 

  25. Boyd, S., & Vandenberghe, L. (2004). Convex optimizition. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61501202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, X. & Liang, H. Performance optimization for energy harvesting cognitive cooperative networks with imperfect spectrum sensing. Wireless Netw 25, 4611–4623 (2019). https://doi.org/10.1007/s11276-018-1754-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1754-8

Keywords

Navigation