Green transmission for C-RAN based on SWIPT in 5G: a review

  • Fadhil Mukhlif
  • Kamarul Ariffin Bin Noordin
  • Ali Mohammed Mansoor
  • Zarinah Mohd Kasirun
Article
  • 31 Downloads

Abstract

C-RAN is a promising new design for the next generation, an important aspect of it in the energy efficiency consideration. Hence, it is considering an innovative candidate to use it as an alternative cellular network instead of the traditional. Investigation green transmission of mobile cloud radio access networks based on SWIPT for 5G cellular networks. Especially, with considering SWIPT as a future solution for increasing the lifetime of end-user battery’s, that’s mean this technique will improving energy efficiency (EE). Addressing SWIPT into C-RAN is a challenging and it is needed to developing a new algorithm to use it on the cellular network with many trying to ensure the success of the system performance. C-RAN as a network and SWIPT as a promising technique with the suggesting green wireless network are discussed besides the importance of energy efficiency for the next generation. Furthermore, there was a study on fifth enabling technologies that can be used for 5G with emphasis on two of them (C-RAN and energy efficiency). Lastly, research challenges and future direction that require substantial research efforts are summarized.

Keywords

Green transmission Power transfer Cloud radio access network Energy harvesting (EH) Information decoding (ID) Time switching Power splitting MIMO 

References

  1. 1.
    Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137.CrossRefGoogle Scholar
  2. 2.
    Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRefGoogle Scholar
  3. 3.
    Kong, Z., et al., (2013). eBase: A Baseband Unit Cluster Testbed to Improve Energy-Efficiency for Cloud Radio Access Network. In 2013 IEEE international conference on communications (pp. 4222–4227). New York: IEEE.Google Scholar
  4. 4.
    Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18(Part 2), 64–84.CrossRefGoogle Scholar
  5. 5.
    Gesbert, D., et al. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(9), 1380–1408.CrossRefGoogle Scholar
  6. 6.
    Wu, J., et al. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29(1), 35–41.CrossRefGoogle Scholar
  7. 7.
    Zhang, H., et al. (2017). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17, 1882–1892.CrossRefGoogle Scholar
  8. 8.
    Zhang, H., et al. (2016). Resource allocation in SWIPT enabled heterogeneous cloud small cell networks with incomplete CSI.Google Scholar
  9. 9.
    Krikidis, I., et al. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.CrossRefGoogle Scholar
  10. 10.
    Zhang, H. J., et al. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRefGoogle Scholar
  11. 11.
    Ma, Y. N., et al. (2016). Optimization of simultaneous wireless information and power transfer in cloud radio access networks. In 2016 IEEE 83rd vehicular technology conference.Google Scholar
  12. 12.
    Le, N. T., et al. (2016). Survey of promising technologies for 5G networks. Mobile Information Systems, p. 25.Google Scholar
  13. 13.
    Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRefGoogle Scholar
  14. 14.
    Zhang, S., et al. (2014). 5G: Towards energy-efficient, low-latency and high-reliable communications networks. In 2014 IEEE international conference on communication systems.Google Scholar
  15. 15.
    Jia, S., et al. (2014). Analyzing and relieving the impact of FCD traffic in LTE-VANET heterogeneous network. In 2014 21st international conference on telecommunications (ICT).Google Scholar
  16. 16.
    Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.CrossRefGoogle Scholar
  17. 17.
    Heath Jr., R. W. (2013). Coverage and capacity analysis of mm wave cellular systems. In Presentation delivered at Int. conf. on communi. (ICC).Google Scholar
  18. 18.
    Alkhateeb, A., et al. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.CrossRefGoogle Scholar
  19. 19.
    Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRefGoogle Scholar
  20. 20.
    Ben-Dor, E., et al. (2011). Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE. IEEE.Google Scholar
  21. 21.
    Akdeniz, M. R., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRefGoogle Scholar
  22. 22.
    Murdock, J. N., et al. (2012). A 38 GHz cellular outage study for an urban outdoor campus environment. In 2012 IEEE wireless communications and networking conference (WCNC). IEEE.Google Scholar
  23. 23.
    Baldemair, R., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.CrossRefGoogle Scholar
  24. 24.
    Hwang, I., Song, B., & Soliman, S. S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.CrossRefGoogle Scholar
  25. 25.
    Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRefGoogle Scholar
  26. 26.
    Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine, 6(1), 37–43.CrossRefGoogle Scholar
  27. 27.
    Chen, K., & Duan, R. (2011). C-RAN: the road towards green RAN. China mobile research institute, p. 2.Google Scholar
  28. 28.
    Hicham, M., Abghour, N., & Ouzzif, M. (2016). Cloud radio access network technology for the next fifth generation mobile networks. Journal of Theoretical and Applied Information Technology, 93(2), 375–384.Google Scholar
  29. 29.
    Rost, P., et al. (2014). Cloud technologies for flexible 5G radio access networks. IEEE Communications Magazine, 52(5), 68–76.CrossRefGoogle Scholar
  30. 30.
    Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transactions on Wireless Communications, 9(5), 1748–1759.CrossRefGoogle Scholar
  31. 31.
    Li, C., Zhang, J., & Letaief, K. B. (2013). Energy efficiency analysis of small cell networks. In 2013 IEEE international conference on communications (ICC).Google Scholar
  32. 32.
    Tombaz, S., et al. (2011). Impact of backhauling power consumption on the deployment of heterogeneous mobile networks. In 2011 IEEE global telecommunications conferenceGLOBECOM 2011.Google Scholar
  33. 33.
    Rao, J. B., & Fapojuwo, A. O. (2013). On the tradeoff between spectral efficiency and energy efficiency of homogeneous cellular networks with outage constraint. IEEE Transactions on Vehicular Technology, 62(4), 1801–1814.CrossRefGoogle Scholar
  34. 34.
    Wu, J. (2012). Green wireless communications: from concept to reality [industry perspectives]. IEEE Wireless Communications, 19(4), 4–5.CrossRefGoogle Scholar
  35. 35.
    Wang, K. Z., et al. (2016). Cost-effective resource allocation in C-RAN with mobile cloud. In 2016 IEEE international conference on communications.Google Scholar
  36. 36.
    Peng, M., et al. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communications, 21(6), 126–135.CrossRefGoogle Scholar
  37. 37.
    Peng, M., et al. (2016). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Multimedia, 18(5), 879–892.CrossRefGoogle Scholar
  38. 38.
    Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18, 64–84.CrossRefGoogle Scholar
  39. 39.
    Peng, M., et al. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14.CrossRefGoogle Scholar
  40. 40.
    Simeone, O., et al. (2016). Cloud radio access network: Virtualizing wireless access for dense heterogeneous systems. Journal of Communications and Networks, 18(2), 135–149.Google Scholar
  41. 41.
    Shi, Y., et al. (2013). Group sparse beamforming for green cloud radio access networks. In 2013 IEEE global communications conference (pp. 4662–4667). New York: IEEE.Google Scholar
  42. 42.
    Zhang, H. J., et al. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.CrossRefGoogle Scholar
  43. 43.
    Dahrouj, H., et al. (2015). Resource allocation in heterogeneous cloud radio access networks: Advances and challenges. IEEE Wireless Communications, 22(3), 66–73.CrossRefGoogle Scholar
  44. 44.
    Ghods, F., et al. (2015). Energy efficiency and spectrum efficiency in cooperative cloud radio access network. In 2015 IEEE pacific rim conference on communications, computers and signal processing (pp. 280–285). New York: IEEE.Google Scholar
  45. 45.
    Chu, Z., Johnston, M., & Le Goff, S. (2015). SWIPT for wireless cooperative networks. Electronics Letters, 51(6), 536–538.CrossRefGoogle Scholar
  46. 46.
    Lien, S. Y., et al. (2015). Ultra-low-latency ubiquitous connections in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 22–31.CrossRefGoogle Scholar
  47. 47.
    Mengjun, Y., et al. (2015). Self-healing based on cooperative transmission via bender’s decomposition in cloud radio access network. China Communications, 12(11), 43–52.CrossRefGoogle Scholar
  48. 48.
    Zeng, T. C., et al. (2015). Green circuit design for battery-free sensors in cloud radio access network. China Communications, 12(11), 1–11.Google Scholar
  49. 49.
    Dai, B., & Yu, W. (2016). Energy efficiency of downlink transmission strategies for cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(4), 1037–1050.CrossRefGoogle Scholar
  50. 50.
    Ghods, F., Fapojuwo, A., & Ghannouchi, F. (2016). Throughput reliability analysis of cloud-radio access networks. Wireless Communications and Mobile Computing, 16(17), 2824–2838.CrossRefGoogle Scholar
  51. 51.
    Yu, Z., et al. (2016). Dynamic resource allocation in TDD-based heterogeneous cloud radio access networks. China Communications, 13(6), 1–11.CrossRefGoogle Scholar
  52. 52.
    Wang, Y. Y., Peng, M. G., & Zhang, K. C. (2016). Economy-efficient resource allocation in cloud radio access networks with fronthaul capacity constraints. In M. S. Obaidat, et al. (Eds.), 2016 international conference on computer, information and telecommunication systems (pp. 215–219).Google Scholar
  53. 53.
    Sigwele, T., et al. (2017). Energy-efficient cloud radio access networks by cloud based workload consolidation for 5G. Journal of Network and Computer Applications, 78, 1–8.CrossRefGoogle Scholar
  54. 54.
    Luo, S. X., Zhang, R., & Lim, T. J. (2015). Downlink and uplink energy minimization through user association and beamforming in C-RAN. IEEE Transactions on Wireless Communications, 14(1), 494–508.CrossRefGoogle Scholar
  55. 55.
    Miyanabe, K., et al. (2015). A cloud radio access network with power over fiber toward 5G networks: QoE-guaranteed design and operation. IEEE Wireless Communications, 22(4), 58–64.CrossRefGoogle Scholar
  56. 56.
    Yoon, C., & Cho, D. H. (2015). Energy efficient beamforming and power allocation in dynamic TDD based C-RAN system. IEEE Communications Letters, 19(10), 1806–1809.CrossRefGoogle Scholar
  57. 57.
    Alhumaima, R. S., & Al-Raweshidy, H. S. (2016). Evaluating the energy efficiency of software defined-based cloud radio access networks. IET Communications, 10(8), 987–994.CrossRefGoogle Scholar
  58. 58.
    Liu, Z., et al. (2016). Research on load balancing in C-RAN with femtocells. Telkomnika (Telecommunication Computing Electronics and Control), 14(1), 86–90.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Alhumaima, R. S., Khan, M., & Al-Raweshidy, H. S. (2016). Component and parameterised power model for cloud radio access network. IET Communications, 10(7), 745–752.CrossRefGoogle Scholar
  60. 60.
    Checko, A., et al. (2016). Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings. Journal of Communications and Networks, 18(2), 162–172.Google Scholar
  61. 61.
    Douik, A., et al. (2016). Coordinated scheduling and power control in cloud-radio access networks. IEEE Transactions on Wireless Communications, 15(4), 2523–2536.CrossRefGoogle Scholar
  62. 62.
    Li, J., et al. (2016). Queue-aware energy-efficient joint remote radio head activation and beamforming in cloud radio access networks. IEEE Transactions on Wireless Communications, 15(6), 3880–3894.CrossRefGoogle Scholar
  63. 63.
    Vu, T. X., Nguyen, T. V., & Quek, T. Q. S. (2016). Power optimization with BLER constraint for wireless fronthauls in C-RAN. IEEE Communications Letters, 20(3), 602–605.CrossRefGoogle Scholar
  64. 64.
    Zhao, Z. Y., et al. (2016). Cluster content caching: An energy-efficient approach to improve quality of service in cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(5), 1207–1221.CrossRefGoogle Scholar
  65. 65.
    Zhou, Y., & Yu, W. (2016). Fronthaul compression and transmit beamforming optimization for multi-antenna uplink C-RAN. IEEE Transactions on Signal Processing, 64(16), 4138–4151.MathSciNetCrossRefGoogle Scholar
  66. 66.
    Qiao, G. H., et al. (2016). Multiple time-scale energy scheduling with energy harvesting aided heterogeneous cloud radio access networks. In 2016 IEEE/Cic international conference on communications in China (Iccc).Google Scholar
  67. 67.
    Patel, M., et al. (2014). Mobile-edge computing introductory technical white paper. White Paper, Mobile-edge Computing (MEC) industry initiative.Google Scholar
  68. 68.
    Chih-Lin, I., et al. (2014). Toward green and soft: a 5G perspective. IEEE Communications Magazine, 52(2), 66–73.CrossRefGoogle Scholar
  69. 69.
    Fan, C., Zhang, Y. J. A., & Yuan, X. (2016). Advances and challenges toward a scalable cloud radio access network. IEEE Communications Magazine, 54(6), 29–35.CrossRefGoogle Scholar
  70. 70.
    Xu, X. D., et al. (2016). A frameless network architecture for the way forward of C-RAN. China Communications, 13(6), 154–166.CrossRefGoogle Scholar
  71. 71.
    Sundaresan, K., et al. (2016). FluidNet: A flexible cloud-based radio access network for small cells. IEEE/ACM Transactions on Networking, 24(2), 915–928.CrossRefGoogle Scholar
  72. 72.
    Sauer, M., Kobyakov, A., & Ng’Oma, A. (2009). Radio over fiber for picocellular network architectures. In 2009 IEEE LEOS annual meeting conference proceedings.Google Scholar
  73. 73.
    Monteiro, P. P., & Gameiro, A. (2014). Hybrid Fibre infrastructures for cloud radio access networks. In M. Jaworski, & M. Marciniak (Eds.), 2014 16th international conference on transparent optical networks, New York: IEEE.Google Scholar
  74. 74.
    Pengyu, L., et al. (2014). The study of C-RAN application on broadband wireless access for high-speed railway. In Wireless communications, networking and mobile computing (WiCOM 2014), 10th international conference on.Google Scholar
  75. 75.
    Kim, S. (2016). News-vendor game-based resource allocation scheme for next-generation C-RAN systems. Eurasip Journal on Wireless Communications and Networking, 2016(1), 158.CrossRefGoogle Scholar
  76. 76.
    Kim, S. (2016). Dynamic C-RAN resource sharing scheme based on a hierarchical game approach. Eurasip Journal on Wireless Communications and Networking, 2016(1), 1–12.CrossRefGoogle Scholar
  77. 77.
    Fehske, A., et al. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine, 49(8), 55–62.CrossRefGoogle Scholar
  78. 78.
    Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49.CrossRefGoogle Scholar
  79. 79.
    Wu, G., et al. (2015). Recent advances in energy-efficient networks and their application in 5G systems. IEEE Wireless Communications, 22(2), 145–151.CrossRefGoogle Scholar
  80. 80.
    Buzzi, S., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34(4), 697–709.CrossRefGoogle Scholar
  81. 81.
    Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 93–100.CrossRefGoogle Scholar
  82. 82.
    Chen, Y., et al. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.CrossRefGoogle Scholar
  83. 83.
    Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.CrossRefGoogle Scholar
  84. 84.
    Zappone, A., & Jorswieck, E. A. (2017). Energy-efficient resource allocation in future wireless networks by sequential fractional programming. Digital Signal Processing, 60, 324–337.CrossRefGoogle Scholar
  85. 85.
    Ericsson, L. (2011). More than 50 billion connected devices. White Paper, 2011.Google Scholar
  86. 86.
    Yousafzai, A., et al. (2017). Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowledge and Information Systems, 50(2), 347–381.CrossRefGoogle Scholar
  87. 87.
    Awoyemi, B. S., Maharaj, B. T. J., & Alfa, A. S. (2016). Solving resource allocation problems in cognitive radio networks: a survey. Eurasip Journal on Wireless Communications and Networking, 2016(1), 176.CrossRefGoogle Scholar
  88. 88.
    Zappone, A., & Jorswieck, E. (2015). Energy efficiency in wireless networks via fractional programming theory. Foundations and Trends in Communications and Information Theory, 11(3–4), 185–396.MATHCrossRefGoogle Scholar
  89. 89.
    Zhang, H., et al. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, PP(99), 1.Google Scholar
  90. 90.
    Zhang, H., et al. (2016). Secure communications in NOMA system: Subcarrier assignment and power allocation. arXiv preprint arXiv:1801.04441, 2018.
  91. 91.
    Mumford, R. (2016). 5G manifesto for deployment of 5G in Europe. Norwood: Horizon House Publications Inc.Google Scholar
  92. 92.
    Hassan, H. A. H., Nuaymi, L., & Pelov, A. (2013). Renewable energy in cellular networks: A survey. In 2013 IEEE online conference on green communications (OnlineGreenComm).Google Scholar
  93. 93.
    Ulukus, S., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.CrossRefGoogle Scholar
  94. 94.
    Lu, X., et al. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.CrossRefGoogle Scholar
  95. 95.
    Visser, H. J., & Vullers, R. J. M. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423.CrossRefGoogle Scholar
  96. 96.
    Liu, L., Zhang, R., & Chua, K.-C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300.CrossRefGoogle Scholar
  97. 97.
    Gurakan, B., et al. (2013). Energy cooperation in energy harvesting communications. IEEE Transactions on Communications, 61(12), 4884–4898.CrossRefGoogle Scholar
  98. 98.
    Chia, Y. K., Sun, S. M., & Zhang, R. (2014). Energy cooperation in cellular networks with renewable powered base stations. IEEE Transactions on Wireless Communications, 13(12), 6996–7010.CrossRefGoogle Scholar
  99. 99.
    Huang, K. B., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetCrossRefGoogle Scholar
  100. 100.
    Ng, D. W. K., Lo, E. S., & Schober, R. (2013). Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Transactions on Wireless Communications, 12(12), 6352–6370.CrossRefGoogle Scholar
  101. 101.
    Sun, Q., Li, L., & Mao, J. (2014). Simultaneous information and power transfer scheme for energy efficient MIMO systems. IEEE Communications Letters, 18(4), 600–603.CrossRefGoogle Scholar
  102. 102.
    Guo, S., et al. (2015). Energy-efficient cooperative T for simultaneous wireless information and power transfer in clustered wireless sensor networks. IEEE Transactions on Communications, 63(11), 4405–4417.CrossRefGoogle Scholar
  103. 103.
    Yang, W., et al. (2016). Energy efficiency analysis and enhancement for secure transmission in SWIPT systems exploiting full duplex techniques. IET Communications, 10(14), 1712–1720.CrossRefGoogle Scholar
  104. 104.
    Ng, D. W. K., & Schober, R. (2015). Secure and green SWIPT in distributed antenna networks with limited backhaul capacity. IEEE Transactions on Wireless Communications, 14(9), 5082–5097.CrossRefGoogle Scholar
  105. 105.
    Akbar, S., et al. (2016). Simulatneous wireless information and power transfer in K-tier heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 15(8), 5804–5818.CrossRefGoogle Scholar
  106. 106.
    Dong, Y., Hossain, M. J., & Cheng, J. (2016). Joint power control and time switching for SWIPT systems with heterogeneous QoS requirements. IEEE Communications Letters, 20(2), 328–331.CrossRefGoogle Scholar
  107. 107.
    Huang, G., Zhang, Q., & Qin, J. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters, 22(12), 2284–2288.CrossRefGoogle Scholar
  108. 108.
    Lee, K., & Hong, J. P. (2016). Energy-efficient resource allocation for simultaneous information and energy transfer with imperfect channel estimation. IEEE Transactions on Vehicular Technology, 65(4), 2775–2780.CrossRefGoogle Scholar
  109. 109.
    Sheng, M., et al. (2016). Energy efficient beamforming in MISO heterogeneous cellular networks with wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 954–968.CrossRefGoogle Scholar
  110. 110.
    Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRefGoogle Scholar
  111. 111.
    Ikhlef, A. (2014). Optimal MIMO multicast transceiver design for simultaneous information and power transfer. IEEE Communications Letters, 18(12), 2153–2156.CrossRefGoogle Scholar
  112. 112.
    Zhao, S., et al. (2014). Antenna selection for simultaneous wireless information and power transfer in MIMO systems. IEEE Communications Letters, 18(5), 789–792.CrossRefGoogle Scholar
  113. 113.
    Fang, B., et al. (2015). AN-aided secrecy precoding for SWIPT in cognitive MIMO broadcast channels. IEEE Communications Letters, 19(9), 1632–1635.CrossRefGoogle Scholar
  114. 114.
    Timotheou, S., et al. (2015). Spatial domain simultaneous information and power transfer for MIMO channels. IEEE Transactions on Wireless Communications, 14(8), 4115–4128.CrossRefGoogle Scholar
  115. 115.
    Wang, S., & Wang, B. (2015). Robust secure transmit design in MIMO channels with simultaneous wireless information and power transfer. IEEE Signal Processing Letters, 22(11), 2147–2151.CrossRefGoogle Scholar
  116. 116.
    Wu, W., & Wang, B. (2015). Efficient transmission solutions for MIMO wiretap channels with SWIPT. IEEE Communications Letters, 19(9), 1548–1551.CrossRefGoogle Scholar
  117. 117.
    Amarasuriya, G., Larsson, E. G., & Poor, H. V. (2016). Wireless information and power transfer in multiway massive MIMO relay networks. IEEE Transactions on Wireless Communications, 15(6), 3837–3855.CrossRefGoogle Scholar
  118. 118.
    Wen, Z., et al. (2016). Joint source and relay beamforming design for full-duplex MIMO AF relay SWIPT systems. IEEE Communications Letters, 20(2), 320–323.CrossRefGoogle Scholar
  119. 119.
    Xiao, J., et al. (2016). Robust transceiver design for two-user MIMO interference channel with simultaneous wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3823–3828.CrossRefGoogle Scholar
  120. 120.
    Zhang, J., et al. (2016). Large system secrecy rate analysis for SWIPT MIMO wiretap channels. IEEE Transactions on Information Forensics and Security, 11(1), 74–85.MathSciNetCrossRefGoogle Scholar
  121. 121.
    Zong, Z. Y., et al. (2016). Optimal transceiver design for SWIPT in K-user MIMO interference channels. IEEE Transactions on Wireless Communications, 15(1), 430–445.CrossRefGoogle Scholar
  122. 122.
    Lam, T. T., Di Renzo, M., & Coon, J. P. (2016). System-level analysis of SWIPT MIMO cellular networks. IEEE Communications Letters, 20(10), 2015–2018.CrossRefGoogle Scholar
  123. 123.
    Khandaker, M. R. A., & Wong, K. K. (2014). SWIPT in MISO multicasting systems. IEEE Wireless Communications Letters, 3(3), 277–280.CrossRefGoogle Scholar
  124. 124.
    Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863.MathSciNetCrossRefGoogle Scholar
  125. 125.
    Shi, Q., et al. (2014). Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Transactions on Wireless Communications, 13(6), 3269–3280.CrossRefGoogle Scholar
  126. 126.
    Shi, Q., et al. (2014). Joint beamforming and power splitting for MISO interference channel with SWIPT: An SOCP relaxation and decentralized algorithm. IEEE Transactions on Signal Processing, 62(23), 6194–6208.MathSciNetCrossRefGoogle Scholar
  127. 127.
    Xu, J., Liu, L., & Zhang, R. (2014). Multiuser miso beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 62(18), 4798–4810.MathSciNetCrossRefGoogle Scholar
  128. 128.
    Feng, R., et al. (2015). Robust secure transmission in MISO simultaneous wireless information and power transfer system. IEEE Transactions on Vehicular Technology, 64(1), 400–405.CrossRefGoogle Scholar
  129. 129.
    Lee, H., et al. (2015). Optimal Beamforming designs for wireless information and power transfer in MISO interference channels. IEEE Transactions on Wireless Communications, 14(9), 4810–4821.CrossRefGoogle Scholar
  130. 130.
    Luo, S., et al. (2015). Capacity region of MISO broadcast channel for simultaneous wireless information and power transfer. IEEE Transactions on Communications, 63(10), 3856–3868.CrossRefGoogle Scholar
  131. 131.
    Tian, M., et al. (2015). Robust AN-aided secure transmission scheme in MISO channels with simultaneous wireless information and power transfer. IEEE Signal Processing Letters, 22(6), 723–727.CrossRefGoogle Scholar
  132. 132.
    Wang, F., et al. (2015). Robust transceiver optimization for power-splitting based downlink MISO SWIPT systems. IEEE Signal Processing Letters, 22(9), 1492–1496.CrossRefGoogle Scholar
  133. 133.
    Zhang, H., et al. (2015). Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE Communications Letters, 19(8), 1347–1350.CrossRefGoogle Scholar
  134. 134.
    Zhang, Q., et al. (2015). Cooperative jamming aided robust secure transmission for wireless information and power transfer in MISO channels. IEEE Transactions on Communications, 63(3), 906–915.CrossRefGoogle Scholar
  135. 135.
    Zhao, X., et al. (2015). Joint optimization of AN-aided transmission and power splitting for MISO secure communications with SWIPT. IEEE Communications Letters, 19(11), 1969–1972.CrossRefGoogle Scholar
  136. 136.
    Chu, Z., et al. (2016). Robust beamforming and power splitting design in MISO SWIPT downlink system. IET Communications, 10(6), 691–698.CrossRefGoogle Scholar
  137. 137.
    Shi, Q., et al. (2016). Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming. IEEE Transactions on Signal Processing, 64(4), 842–854.MathSciNetCrossRefGoogle Scholar
  138. 138.
    Fang, Z., Yuan, X., & Wang, X. (2014). Distributed energy beamforming for simultaneous wireless information and power transfer in the two-way relay channel. IEEE Signal Processing Letters, 22(6), 656–660.CrossRefGoogle Scholar
  139. 139.
    Li, G., et al. (2014). High-rate relay beamforming for simultaneous wireless information and power transfer. Electronics Letters, 50(23), 1759–1761.CrossRefGoogle Scholar
  140. 140.
    Li, Q., Zhang, Q., & Qin, J. (2014). Beamforming in non-regenerative two-way multi-antenna relay networks for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 13(10), 5509–5520.CrossRefGoogle Scholar
  141. 141.
    Li, Q., Zhang, Q., & Qin, J. (2014). Secure relay beamforming for simultaneous wireless information and power transfer in nonregenerative relay networks. IEEE Transactions on Vehicular Technology, 63(5), 2462–2467.CrossRefGoogle Scholar
  142. 142.
    Chen, H., et al. (2015). Distributed power splitting for SWIPT in relay interference channels using game theory. IEEE Transactions on Wireless Communications, 14(1), 410–420.CrossRefGoogle Scholar
  143. 143.
    Ding, K., Yu, Y., & Lin, H. (2015). Analysis of RWPT relays for intermediate-range simultaneous wireless information and power transfer system. Progress in Electromagnetics Research Letters, 57, 111–116.CrossRefGoogle Scholar
  144. 144.
    Song, M., et al. (2015). Probabilistic-constrained simultaneous wireless information and power transfer for multiple-relay networks. Journal of Communications, 10(7), 497–502.Google Scholar
  145. 145.
    Di, X., et al. (2016). Simultaneous wireless information and power transfer in two-hop OFDM decode-and-forward relay networks. KSII Transactions on Internet and Information Systems, 10(1), 152–167.MathSciNetGoogle Scholar
  146. 146.
    Huang, G., & Tang, D. (2016). Wireless information and power transfer in two-way OFDM amplify-and-forward relay networks. IEEE Communications Letters, 20(8), 1563–1566.CrossRefGoogle Scholar
  147. 147.
    Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787.CrossRefGoogle Scholar
  148. 148.
    Yang, Z., et al. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.CrossRefGoogle Scholar
  149. 149.
    Zhang, D., et al. (2016). Two-hop co-located robust precoding design in radio SWIPT relay networks. Journal of Communications, 11(1), 71–76.MathSciNetGoogle Scholar
  150. 150.
    Zhang, G., et al. (2016). Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multipleoutput relaying systems. IET Communications, 10(7), 796–804.MathSciNetCrossRefGoogle Scholar
  151. 151.
    Ding, Z. G., & Poor, H. V. (2016). Multi-user SWIPT cooperative networks: Is the max-min criterion still diversity-optimal? IEEE Transactions on Wireless Communications, 15(1), 553–567.CrossRefGoogle Scholar
  152. 152.
    Liu, Y., et al. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRefGoogle Scholar
  153. 153.
    Mishra, D., De, S., & Chiasserini, C. F. (2016). Joint optimization schemes for cooperative wireless information and power transfer over rician channels. IEEE Transactions on Communications, 64(2), 554–571.CrossRefGoogle Scholar
  154. 154.
    Mohjazi, L., Muhaidat, S., & Dianati, M. (2016). Performance analysis of differential modulation in SWIPT cooperative networks. IEEE Signal Processing Letters, 23(5), 620–624.CrossRefGoogle Scholar
  155. 155.
    Boshkovska, E., et al. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085.CrossRefGoogle Scholar
  156. 156.
    Ng, D. W. K., Lo, E. S., & Schober, R. (2016). Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3166–3184.CrossRefGoogle Scholar
  157. 157.
    Yin, S., & Qu, Z. (2016). Resource allocation in multiuser OFDM systems with wireless information and power transfer. IEEE Communications Letters, 20(3), 594–597.CrossRefGoogle Scholar
  158. 158.
    Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In 2010 IEEE international symposium on information theory.Google Scholar
  159. 159.
    Ding, Z., et al. (2015). Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Communications Magazine, 53(4), 86–93.CrossRefGoogle Scholar
  160. 160.
    Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRefGoogle Scholar
  161. 161.
    Zhang, R., Maunder, R. G., & Hanzo, L. (2015). Wireless information and power transfer: From scientific hypothesis to engineering practice. IEEE Communications Magazine, 53(8), 99–105.CrossRefGoogle Scholar
  162. 162.
    Zheng, G., et al. (2014). Information and energy cooperation in cognitive radio networks. IEEE Transactions on Signal Processing, 62(9), 2290–2303.MathSciNetCrossRefGoogle Scholar
  163. 163.
    Krikidis, I., et al. (2014). A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels. IEEE Transactions on Communications, 62(5), 1577–1587.CrossRefGoogle Scholar
  164. 164.
    Timotheou, S., & Krikidis, I. (2013). Joint information and energy transfer in the spatial domain with channel estimation error. In 2013 IEEE online conference on green communications (OnlineGreenComm).Google Scholar
  165. 165.
    Larsson, E. G., et al. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRefGoogle Scholar
  166. 166.
    Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.CrossRefGoogle Scholar
  167. 167.
    Soh, Y. S., et al. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.CrossRefGoogle Scholar
  168. 168.
    Björnson, E., Sanguinetti, L., & Kountouris, M. (2016). Deploying dense networks for maximal energy efficiency: Small cells meet massive MIMO. IEEE Journal on Selected Areas in Communications, 34(4), 832–847.CrossRefGoogle Scholar
  169. 169.
    Niu, Z., et al. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48(11), 74–79.CrossRefGoogle Scholar
  170. 170.
    Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136.CrossRefGoogle Scholar
  171. 171.
    Alaba, F. A., et al. (2017). Internet of things security: A survey. Journal of Network and Computer Applications, 88, 10–28.CrossRefGoogle Scholar
  172. 172.
    Wang, F., et al. (2017). Recent advances in the internet of things: Multiple perspectives. Iete Technical Review, 34(2), 122–132.CrossRefGoogle Scholar
  173. 173.
    Friess, P. (2013). Internet of things: Converging technologies for smart environments and integrated ecosystems. River Publishers.Google Scholar
  174. 174.
    Evans, D. (2012). The internet of things how the next evolution of the internet is changing everything (April 2011). White Paper by Cisco Internet Business Solutions Group (IBSG).Google Scholar
  175. 175.
    Ejaz, W., ul Hasan, N., & Kim, H. S. (2011). Spectrum sensing in cognitive radio mobile ad hoc networks: A survey. 한국통신학회 학술대회논문집, pp. 376–377.Google Scholar
  176. 176.
    Cheng, P., et al. (2012). Resource allocation for cognitive networks with D2D communication: An evolutionary approach. In 2012 IEEE wireless communications and networking conference (WCNC).Google Scholar
  177. 177.
    Gandotra, P., Kumar Jha, R., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29.CrossRefGoogle Scholar
  178. 178.
    Sedidi, R., & Kumar, A. (2016). Key exchange protocols for secure device-to-device (D2D) communication in 5G. In A. L. Beylot et al. (Eds.), 2016 wireless days.Google Scholar
  179. 179.
    Wang, C. X., et al. (2016). Recent advances and future challenges for massive MIMO channel measurements and models. Science China-Information Sciences, 59(2), 16.Google Scholar
  180. 180.
    Ali, E., et al. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering, 18(6), 753–772.CrossRefGoogle Scholar
  181. 181.
    Nam, J., et al. (2012). Joint spatial division and multiplexing: Realizing massive MIMO gains with limited channel state information. In 2012 46th annual conference on information sciences and systems (CISS).Google Scholar
  182. 182.
    Ku, Y. J., et al. (2017). 5G radio access network design with the fog paradigm: Confluence of communications and computing. IEEE Communications Magazine, 55(4), 46–52.CrossRefGoogle Scholar
  183. 183.
    Kim, S. (2017). Fog radio access network system control scheme based on the embedded game model. Eurasip Journal on Wireless Communications and Networking, 2017(1), 113.CrossRefGoogle Scholar
  184. 184.
    Peng, M. G., & Zhang, K. C. (2016). Recent advances in fog radio access networks: performance analysis and radio resource allocation. IEEE Access, 4, 5003–5009.CrossRefGoogle Scholar
  185. 185.
    Zhang, H. J., et al. (2017). Fog radio access networks: mobility management, interference mitigation, and resource optimization. IEEE Wireless Communications, 24(6), 120–127.CrossRefGoogle Scholar
  186. 186.
    Islam, S. M. R., et al. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.CrossRefGoogle Scholar
  187. 187.
    Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, E98B(3), 403–414.CrossRefGoogle Scholar
  188. 188.
    Zhang, H., et al. (2018). Energy-efficient resource allocation in NOMA heterogeneous networks. arXiv preprint arXiv:1801.04552.
  189. 189.
    Zhang, H., et al. Resource allocation in NOMA based fog radio access networks. Google Scholar
  190. 190.
    Marotta, M. A., et al. (2015). Resource sharing in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 74–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fadhil Mukhlif
    • 1
  • Kamarul Ariffin Bin Noordin
    • 1
  • Ali Mohammed Mansoor
    • 2
  • Zarinah Mohd Kasirun
    • 2
  1. 1.Department of Electrical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations