Advertisement

A resource allocation algorithm for throughput maximization with fairness increase based on virtual PRB in MIMO-OFDMA systems

Article
  • 52 Downloads

Abstract

This paper deals with a new resource allocation algorithm in downlink MIMO-OFDMA systems. The objective is to maximize the system throughput with respect to fairness criteria since some users may experience bad channel conditions for a long time. Known to be NP-hard, the original optimization problem is divided into two sub-problems where radio resource allocation and power allocation are performed separately. Firstly, a recursive PRB allocation algorithm is performed aiming at maximizing the system throughput. In LTE systems, 41% of sub-carriers are considered unused which introduces spectral efficiency loss. As solution, the eNodeB aggregates the unused sub-carriers by each user to construct a “virtual” PRB to be allocated to seldom served user for fairness and throughput increase. Secondly, power allocation is performed to select a more appropriate MCS.

Keywords

MIMO OFDMA AMC Throughput Fairness Virtual PRB 

References

  1. 1.
    3GPP. (2008). TR 25.913 (V.8.0.0) Requirements for evolved UTRA (E-UTRA) and evolved UTRAN (E-UTRAN), Technical specification group radio access network (release 8), December, 2008.Google Scholar
  2. 2.
    3GPP. (2010). TR 36.913 (V.9.0.0) requirements for further advancements for evolved universal terrestrial radio access (E-UTRA) (LTE-Advanced) (release 9), February, 2010.Google Scholar
  3. 3.
    3GPP. (2011). TR 36.913 (V.10.0.0) requirements for further advancements for evolved universal terrestrial radio access (E-UTRA) (LTE-Advanced) (release 10), April, 2011.Google Scholar
  4. 4.
    Fantacci, R., Marabissi, D., Tarchi, D., & Habib, I. (2009). Adaptive modulation and coding techniques for OFDMA systems. IEEE Transactions on Wireless Communications, 8(9), 4876–4883.CrossRefGoogle Scholar
  5. 5.
    Bruno, R., Masaracchia, A., & Passarella, A. (2014). Robust adaptive modulation and coding (AMC) selection in LTE systems using reinforcement learning. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). IEEE.Google Scholar
  6. 6.
    Duplicy, J., Badic, B., Balraj, R., Ghaffar, R., Horvath, P., Kaltenberger, F., et al. (2011). Mu-MIMO in LTE systems. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–12.CrossRefGoogle Scholar
  7. 7.
    Wong, I. C., Shen, Z., Evans, B. L., & Andrews, J. G. (2004). A low complexity algorithm for proportional resource allocation in OFDMA systems. In IEEE workshop on signal processing systems, 2004. SIPS 2004 (pp. 1–6).Google Scholar
  8. 8.
    Dardouri, S., & Bouallegue, R. (2014). Comparative study of scheduling algorithms for LTE networks. International Journal of Computer, Information Science and Engineering, 8(3), 467–472.Google Scholar
  9. 9.
    Tuomaala, E., & Wang, H. (2005). Effective SINR approach of link to system mapping in OFDM/multi-carrier mobile network. In 2005 2nd International conference on mobile technology, applications and systems. IEEE.Google Scholar
  10. 10.
    Braz, I., Guan, L., Zhu, A., & Brazil, T. J. (2010). PAPR reduction technique using unused subcarriers for SFBC-based MIMO-OFDM systems. In IEEE wireless technology conference (EuWIT) (pp. 141–144).Google Scholar
  11. 11.
    Dikamba, T. (2011). Downlink scheduling in 3GPP long term evolution (LTE) (Doctoral dissertation, TU Delft, Delft University of Technology).Google Scholar
  12. 12.
    Schwarz, S., Mehlführer, C., & Rupp, M. (2010). Low complexity approximate maximum throughput scheduling for LTE. In 2010 Conference record of the forty fourth Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 1563–1569). IEEE.Google Scholar
  13. 13.
    Nsiri, B., Nasreddine, M., Ammar, M., Hakimi, W., & Sofien, M. (2014). Performance comparison of scheduling algorithms for downlink LTE system. In Proc. of world symposium on computer networks and information security (pp. 125–129).Google Scholar
  14. 14.
    Chadchan, S. M., & Akki, C. B. (2013). A fair downlink scheduling algorithm for 3GPP LTE networks. International Journal of Computer Network and Information Security (IJCNIS), 5(6), 34.CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Fan, L., He, D., & Tafazolli, R. (2008). Performance comparison of scheduling algorithms in network mobility environment. Computer Communications, 31(9), 1727–1738.CrossRefGoogle Scholar
  16. 16.
    Mehlführer, C., Ikuno, J. C., Simko, M., Schwarz, S., Wrulich, M., & Rupp, M. (2011). The Vienna LTE simulators-enabling reproducibility in wireless communications research. EURASIP Journal on Advances in Signal Processing, 2011, 29.CrossRefGoogle Scholar
  17. 17.
    Gavrilovska, L., & Talevski, D. (2011). Novel scheduling algorithms for LTE downlink transmission. In 2011 19th Telecommunications forum (TELFOR) (pp. 398–401). IEEE.Google Scholar
  18. 18.
    Dimitrova, D. C., Berg, V. D. H., Litjens, R., & Heijenk, G. (2010). Scheduling strategies for LTE uplink with flow behaviour analysis. In 4th ERCIM workshop on e-mobility. Lulea Tekniska Universitet.Google Scholar
  19. 19.
    Kim, Y., & Sichitiu, M. L. (2011). Optimal max min fair resource allocation in multihop relay-enhanced WiMAX networks. IEEE Transactions on Vehicular Technology, 60(8), 3907–3918.CrossRefGoogle Scholar
  20. 20.
    Rhee, W., & Cioffi, J. M. (2000). Increase in capacity of multiuser OFDM system using dynamic subchannel allocation. In 2000 IEEE 51st vehicular technology conference proceedings, 2000. VTC 2000-Spring Tokyo (Vol. 2, pp. 1085–1089). IEEE.Google Scholar
  21. 21.
    Eryilmaz, A., & Srikant, R. (2005). Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control. In INFOCOM 2005. 24th Annual joint conference of the IEEE computer and communications societies. Proceedings IEEE (Vol. 3, pp. 1794–1803). IEEE.Google Scholar
  22. 22.
    Caban, S., Rupp, M., Mehlführer, C., & Wrulich, M. (2011). Evaluation of HSDPA and LTE: From testbed measurements to system level performance. Hoboken: Wiley.CrossRefGoogle Scholar
  23. 23.
    Kwan, R., Leung, C., & Zhang, J. (2008). Multiuser scheduling on the downlink of an LTE cellular system. Research Letters in Communications, 2008, 3.CrossRefGoogle Scholar
  24. 24.
    Caire, G., Taricco, G., & Biglieri, E. (1996). Capacity of bit-interleaved channels. Electronics Letters, 32(12), 1060–1061.CrossRefGoogle Scholar
  25. 25.
    Jain, R., Chiu, D., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Maynard: Eastern Research Laboratory, Digital Equipment Corporation.Google Scholar
  26. 26.
    Ge, X., Huang, X., Wang, Y., Chen, M., Li, Q., Han, T., et al. (2014). Energy-efficiency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints. IEEE Transactions on Vehicular Technology, 63(5), 2127–2138.CrossRefGoogle Scholar
  27. 27.
    Karachontzitis, S., & Dagiuklas, T. A. (2011). Chunk-based resource allocation scheme for downlink MIMO-OFDMA channel using linear precoding. In IEEE ISCC (pp. 931–936).Google Scholar
  28. 28.
    Olmos, J., Ruiz, S., Garcia-Lozano, M., & Martin-Sacristán, D. (2010). Link abstraction models based on mutual information for LTE downlink. In COST (Vol. 2100, pp. 1–18).Google Scholar
  29. 29.
    Tao, T., & Czylwik, A. (2011). Performance analysis of link adaptation in LTE systems. In 2011 International ITG workshop on smart antennas (WSA) (pp. 1–5). IEEE.Google Scholar
  30. 30.
    Olmos, J., Serra, A., Ruiz, S., Garcia-Lozano, M., & Gonzalez, D. (2009). Exponential effective SIR metric for LTE downlink. In IEEE PIMRC (pp. 900–904).Google Scholar
  31. 31.
    Fan, J., Yin, Q., Li, G. Y., Peng, B., & Zhu, X. (2011). MCS selection for throughput improvement in downlink LTE systems. In 2011 Proceedings of 20th international conference on computer communications and networks (ICCCN) (pp. 1–5). IEEE.Google Scholar
  32. 32.
    Jiancun, F., Qinye, Y., Li, G., Bingguang, P., & Xiaolong, Z. (2011). Adaptive block-level resource allocation in OFDMA networks. IEEE Transactions on Wireless Communications, 10(11), 3966–3972.CrossRefGoogle Scholar
  33. 33.
    Ikuno, J., Wrulich, M., & Rupp, M. (2010). System level simulation of LTE networks. In IEEE VTC Spring (pp. 1–5).Google Scholar
  34. 34.
    Ben Hassen, W., Afif, M., & Tabbane, S. (2014). An adaptive PRB, power and MCS allocation using AMC for MIMO-OFDMA systems. Wireless Personal Communications, 75(4), 2549–2567.CrossRefGoogle Scholar
  35. 35.
    Lai, Y. C., Chen, Y. H., & Lai, C. N. (2012). A channel quality aware algorithm for IEEE 802.16 uplink burst construction. In 2012 IEEE 26th international conference on advanced information networking and applications (AINA) (pp. 207–214). IEEE.Google Scholar
  36. 36.
    Yeh, S. P., Talwar, S., Lee, S. C., & Kim, H. (2008). WiMAX femtocells: A perspective on network architecture, capacity, and coverage. IEEE Communications Magazine, 46(10), 58–65.CrossRefGoogle Scholar
  37. 37.
    Perez, D. L., Ladanyi, A., Juttner, A., Rivano, H., Zhang, J. (2011). Optimization method for the joint allocation of modulation schemes, coding rates, resource blocks and power in self-organizing LTE networks. In IEEE INFOCOM (pp. 111–115).Google Scholar
  38. 38.
    Guan, N., Zhou, Y., Tian, L., Sun, G., & Shi, J. (2011). QoS quaranteed resource block allocation algorithm for LTE systems. In IEEE WiMob (pp. 307–312).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mediatron Lab, Sup’ComCarthage UniversityTunisTunisia

Personalised recommendations