Skip to main content
Log in

Incorporating diversity in cloud-computing: a novel paradigm and architecture for enhancing the performance of future cloud radio access networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The incorporation of cloud computing in cloud radio access networks (C-RAN) implies that drawbacks of existing cloud platforms influence wireless network performance. Two of such drawbacks are power usage effectiveness and cloud content access latency. New locations such as the ocean, stratosphere and outer space are suitable alternative locations for cloud computing platforms. These new locations have cooling benefits and enhance the power usage effectiveness of future cloud computing platforms. The latency is also reduced when cloud computing platforms in these locations are closer to subscribers. This paper proposes the cloud diversity concept for C-RANs. Cloud diversity proposes combining cloud computing platforms at locations close to subscribers and with cooling benefits. Cloud computing platforms in the aforementioned locations are closer to different subscribers for which they reduce the latency of data access. This paper presents an architecture showing a future C-RAN that incorporates cloud diversity. It formulates a performance model and presents simulation results. The results obtained show that the incorporation of cloud diversity enhances power usage effectiveness by up to 74.9% on average. Cloud diversity also enhances data transmission by reducing the number of round trips associated with data access by up to 63.6% on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang, C., Zu, M., Hu, F., Jiang, Y., & Li, Y. (2017). Utilizing cloud computing to address big geospatial data challenges. Computers, Environment and Urban Systems, 61(Part B), 120–128.

    Article  Google Scholar 

  2. Bucur, A., Wagner, W., Elefante, S., Naeimi, V., & Briese, C. (2018). Development of an earth observation cloud platform in support to water resources monitoring. In P. P. Mathieu & C. Aubrecht (Eds.), Earth observation open science and innovation, ISSI scientific report series (Vol. 15, pp. 275–283). Cham: Springer.

    Chapter  Google Scholar 

  3. Sabater, J., Sanchez-Exposito, S., Best, P., Garrido, J., Montenegro, L., & Lezzi, D. (2017). Calibration of LOFAR data on the cloud. Astronomy and Computing, 19, 75–89.

    Article  Google Scholar 

  4. Zhang, Y., & Zhao, Y. (2015). Astronomy in the big data era. Data Science Journal, 14(11), 1–9.

    MathSciNet  Google Scholar 

  5. Periola, A. A., & Falowo, O. E. Intelligent cognitive radio models for enhancing future radio astronomy observations. Advances in Astronomy 2016, pp 1–15, Article ID, 5408403.

  6. Wang, X., Lavder, C., Wang, L., Tornatore, M., Chung, H. S., Lee, H. H., et al. (2017). Virtualized cloud radio access network for 5G transport. IEEE Communications Magazine, 55(9), 202–209.

    Article  Google Scholar 

  7. Sigwelle, T., Atam, A. S., Pillai, P., & Hu, Y. F. (2017). Energy efficient cloud radio access networks by cloud based workload consolidation for 5G. Journal of Network and Computer Applications, 78, 1–8.

    Article  Google Scholar 

  8. Hu, J., Jing, X., & Li, J. Millimeter wave cloud radio access network coverage and capacity. In International conference on signal and information processing, networking and computers, Lecture Notes in electrical engineering (Vol. 473). Springer, Singapore.

  9. Cisco. Cisco fog computing solutions: Unleash the power of the internet of things. [Online] https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-solutions.pdf.

  10. Osanaiye, O., Chen, S., Yan, Z., Lu, R., Choo, K. R., & Dlodlo, M. (2017). From cloud to fog computing: A review and a conceptual live VM migration framework. IEEE Access, 5, 8284–8300.

    Article  Google Scholar 

  11. Santos, J., Waters, T., Volckaert, B., & Turck, F. D. (2018). Fog computing: Enabling the management and orchestration of smart city applications in 5G networks. Entropy, 20, 4. https://doi.org/10.3390/e20010004.

    Article  Google Scholar 

  12. Chiang, M., Ha, S., Chih-Lin, I., Risso, F., & Zhang, T. (2017). Clarifying fog computing and networking: 10 questions and answers. IEEE Communications Magazines, 55(4), 18–20.

    Article  Google Scholar 

  13. Akbari, E., Alavipanah, S. K., Jeihouni, M., Hajeb, M., Haase, D., & Alavipanah, S. (2019). A review of ocean/sea subsurface water temperature studies from remote sensing and non-remote sensing methods. Water, 9(936), 1–25.

    Google Scholar 

  14. Cutler, B., Fowers, S., Kramer, J., & Peterson, E. (2017). Dunking the data center. IEEE Spectrum, 3, 26–31.

    Article  Google Scholar 

  15. Sharma, P., Pegus, P., Irwin, D., Shenoy, P., Goodhue, J., & Colbert, J. (2017). Design and operational analysis of a green data centre. IEEE Internet Computing, 21(4), 16–24.

    Article  Google Scholar 

  16. Dou, H., Qi, Y., Wei, W., & Song, H. (2017). Carbon aware electricity cost minimization for sustainable data centers. IEEE Transactions on Sustainable Computing, 2(2), 211–223.

    Article  Google Scholar 

  17. Radu, L. D. (2017). Green cloud computing: A literature survey. Symmetry, 9(295), 1–20.

    Google Scholar 

  18. Avgerinou, M., Bertoldi, P., & Castellazi, L. (2017). Trends in data center energy consumption under the European code of conduct for data center energy efficiency. Energies, 10(1470), 1–18.

    Google Scholar 

  19. Ristic, B., Madani, K., & Makuch, Z. (2017). The water footprint of data centers. Sustainability, 7, 11260–11284.

    Article  Google Scholar 

  20. Hogan, M. (2015). Data flows and water woes: The Utah data centre. Big Data and Society. https://doi.org/10.1177/2053951715592429.

    Article  Google Scholar 

  21. Takashi, Y., Masaki, K., Masahiko, T., Shinya, M., Yoichi, H., & Shinji, A. (2015). Scalable resource disaggregated platform that achieves diverse and various computing services. NEC Technical Journal, 9(2), 71–76.

    Google Scholar 

  22. Krishnapura, S., Achuthen, S., Lal, V., & Tang, T. (2017). Disaggregated servers drive data center efficiency and innovation. Intel White Paper.

  23. Gao, J. Machine learning applications for data center optimization. [Online] https://research.google.com/pubs/archive.45242.pdf.

  24. Basalisco, B., Holm, S. R., Theilgaard, C. H., Gustaffson, C., Fredslund, N. C., Sunesen, E. R., & Thelle, M. H. European data centers—How Google’s digital infrastructure investment is supporting sustainable growth in Europe. [Online] https://google.com/about/datacenters/eustory/Google-EU-DCs_Report.pdf.

  25. Shinjoung, Y. (2016). From paper mill to Google data center. In Mondotheque: A radiated book, pp 250–262. Available from: http://www.mondotheque.be/wiki/index.php/The_radiated_book.

  26. Lin, Q., Song, H., Gui, X., Wang, X., & Su, S. (2018). A shortest path routing algorithm for unmanned aerial systems based on grid position. Journal of Network and Computer Applications, 103(C), 215–224.

    Article  Google Scholar 

  27. Mozzaffari, M., Saad, W., Bennis, M., Nam, Y. H., Debbah, M. A Tutorial on UAV for wireless networks: Applications, challenges and open problems. eprint arXiv: 1803.00680.

  28. Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey of unmanned aerial vehicle networks for civil applications: A communications view point. IEEE Communications Surveys and Tutorials, 18(4), 2624–2661.

    Article  Google Scholar 

  29. Yanmaz, E., Quaritsch, M., Yahyanejad, S., Rinner, B., Hellwagner, H., & Bettstetter, C. (2017). Communication and coordination for drone networks. In Y. Zhou & T. Kunz (Eds.), AdHoc networks (Vol. 184)., lecture notes of the Institute for Computer Sciences, social informatics and telecommunications engineering Cham: Springer.

    Google Scholar 

  30. Yuniarti, D. Regulatory challenges of broadband communication services from high altitude platforms (HAPs). In International conference on information and communications technology, Yogyakarta Indonesia, 6–7 March 2018. https://doi.org/10.1109/ico/act.2018.8350752.

  31. Sharma, M., Chadha, D., & Chandra, V. (2016). High altitude platform for free space optical communications: Performance, evaluation and reliability analysis. Journal of Optical Communication Networks, 8, 600–609.

    Article  Google Scholar 

  32. Kausal, H., & Kaddoum, G. (2017). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys and Tutorials, 19(1), 57–96.

    Article  Google Scholar 

  33. Hechenblaikner, G., Hufgard, F., Burkhardt, J., Kiesel, N., Johann, U., Aspelmeyer, M., et al. (2014). How cold can you get in space? Quantum physics at cryogenic temperatures in space. New Journal of Physics, 16(013058), 1–15.

    Google Scholar 

  34. Zanoni, A. P., Burkhardt, J., Johann, U., Aspelmeyer, M., Kaltenbaek, R., & Hechenblaikner, G. (2016). Thermal Performance of a radiatively cooled system for quantum optomechanical experiments in space. Applied Thermal Engineering, 107, 689–699.

    Article  Google Scholar 

  35. Buddhiraju, S., Santhanam, P., & Fan, S. (2016). Thermodynamic limits of energy harvesting from outgoing thermal radiation. PNAS, 115(6), E3609–E3615.

    Google Scholar 

  36. Maycock, A. C. (2016). The contribution of ozone to future stratospheric temperature trends. Geophysical Research Letters, 43, 4609–4616.

    Article  Google Scholar 

  37. Suarez, F., Young, P. J., & Wild, O. (2016). Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble. Atmospheric Chemistry and Physics, 16, 343–363.

    Article  Google Scholar 

  38. Goessling, H. F., & Bathiany, S. (2016). Why CO2 cools the middle atmosphere—A consolidating model perspective. Earth System Dynamics, 7, 697–715.

    Article  Google Scholar 

  39. Hani, Q. B., & Dichter, J. P. (2017). Energy-efficient service oriented architecture for mobile cloud handover. Journal of Cloud Computing: Advances, Systems and Applications, 6(9), 1–13.

    Google Scholar 

  40. Zhou, B., & Buyya, R. (2018). Augmentation techniques for mobile cloud computing: A taxonomy, survey and future directions. ACM Computing Surveys, 51(1), Article 13.

  41. Wozniak, J. (2016). Mobility management solutions for current IP and future networks. Telecommunications System, 61(2), 257–275.

    Article  Google Scholar 

  42. Lynn, B., Medved, A., & Griggs, T. A comparative analysis on the impact of salinity on the heat generation of OTEC plants to determine the mist plausible geographical location. PAM Review, Subject 68412, pp 119–130.

  43. https://www.engineeringtoolbox.com/carbon-monoxide-d_975.html.

  44. http://catalog.conveyorspneumatic.com/Asset/FLS%20Specific%20Heat%20Capacities%20of%20Gases.pdf.

  45. www.elmesser.ee/assets/media/201127.

  46. https://www.engineeringtoolbox.com/oxygen-d_978.htm.

  47. https://www.engineeringtoolbox.com/nitrogen-d_977.htm.

  48. Krishnapura, S., Achutan, S., Lal, V., & Tang, T. (2017) IT@INTEL: Disaggregated servers drive data centre efficiency and innovation. White Paper.

  49. https://www.google.com/about/datacenters/efficiency/internal/.

  50. Park, J. (2011). Designing a very efficient data centre. [Online] Available at: https://web.facebook.com/notes/facebook-engineering/designing-a-very-efficient-data-center/10150148003778920/?_rdc=1&_rdr.

  51. Microsoft, ‘Microsoft’s Cloud Infrastructure – Datacentres and Network Fact Sheet’, June 2015.

  52. Bar, J. (2015). Cloud computing server utilization, & the environment. [Online] Accessed: https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayodele Periola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periola, A. Incorporating diversity in cloud-computing: a novel paradigm and architecture for enhancing the performance of future cloud radio access networks. Wireless Netw 25, 3783–3803 (2019). https://doi.org/10.1007/s11276-018-01915-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-01915-2

Keywords

Navigation