Skip to main content
Log in

An efficient data collection and load balance algorithm in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The nature of multi-hop data transmission in wireless sensor network will cause serious load unbalance which will produce great restrains in related applications considering the limited energy resource. Relative load balance algorithms are usually performed inside the clusters without considering about the energy consumption of the whole network. A cluster-based balanced energy consumption algorithm (BECA) is proposed by introducing in multiple inter-cluster links to distribute the load, so as to achieve global load balance. Moreover, an efficient data collecting mechanism is proposed based on BECA to improve the traffic balance further. Simulating results based on NS2 show that BECA can obtain better balance properties and prolong the network lifetime effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nam, W. H., Kim, T., Hong, E. M., Choi, J. Y., et al. (2017). A wireless sensor network (WSN) application for irrigation facilities management based on information and communication technologies (ICTs). Computers and Electronics in Agriculture, 143, 185–192.

    Article  Google Scholar 

  2. Xie, K., Ning, X. P., Wang, X., He, S. M., & Qin, Z. (2017). An efficient privacy-preserving compressive data gathering scheme in WSNs. Information Sciences, 390, 82–94.

    Article  Google Scholar 

  3. Pandey, O. J., & Hegde, R. M. (2017). Node localization over small world WSNs using constrained average path length reduction. Ad Hoc Networks, 67, 87–102.

    Article  Google Scholar 

  4. Tawalbeh, L., Hashish, S., & Tawalbeh, H. (2017). Quality of service requirements and challenges in generic WSN infrastructures. Procedia Computer Science, 109, 1116–1121.

    Article  Google Scholar 

  5. Mohamed, S. M., Hamza, H. S., & Saroit, I. A. (2017). Coverage in mobile wireless sensor networks (M-WSN): a survey. Computer Communications, 110, 133–150.

    Article  Google Scholar 

  6. Du, T., Qu, S. N., Liu, K. Q., Xu, J. W., et al. (2016). An efficient data aggregation algorithm for WSNs based on dynamic message list. Procedia Computer Science, 83, 98–106.

    Article  Google Scholar 

  7. Singh, R., & Verma, A. K. (2017). Efficient image transfer over WSN using cross layer architecture. Optik-International Journal for Light and Electron Optics, 130, 499–504.

    Article  Google Scholar 

  8. Ran, G., Zhang, H., & Gong, S. (2010). Improving on LEACH protocol of wireless sensor networks using fuzzy logic. JICS, 7, 213–218.

    Google Scholar 

  9. Li, J., & Shi, X. (2007). Improved HEED routing protocol in wireless sensor networks. Computer Engineering and Applications, 43, 165–167.

    Google Scholar 

  10. Hu, J. H., Liu, X. C., & Tan, Z. F. (2014). Improved scheme based on PEGASIS algorithm. Microelectronics and Computer, 11, 36–40.

    Google Scholar 

  11. Rosset, V., Paulo, M. A., & Cespedes, J. G. (2017). Enhancing the reliability on data delivery and energy efficiency by combining swarm intelligence and community detection in large-scale WSNs. Expert Systems with Applications, 78, 89–102.

    Article  Google Scholar 

  12. Li, L., Sun, J., & Li, Y. S. (2017). Thermal load and bending analysis of heat collection element of direct-steam-generation parabolic-trough solar power plant. Applied Thermal Engineering, 127, 1530–1542.

    Article  Google Scholar 

  13. Gao, C., Zhen, Z. Y., & Gong, H. J. (2016). A self-organized search and attack algorithm for multiple unmanned aerial vehicles. Aerospace Science and Technology, 54, 229–240.

    Article  Google Scholar 

  14. Patil, V. U., & Kapur, A. R. (2015). Real Time alert data acquisition system USING dynamic IP embedded webserver by USB modem. Procedia Computer Science, 49, 187–193.

    Article  Google Scholar 

  15. Sabunas, A., & Kanapickas, A. (2017). Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software. Energy Procedia, 128, 92–99.

    Article  Google Scholar 

  16. Akkari, W., Bouhdid, B., & Belghith, A. (2015). LEATCH: Low energy adaptive tier clustering hierarchy. Procedia Computer Science, 52, 365–372.

    Article  Google Scholar 

  17. Nita, V., Narissa, W., Jeremy, C., Lindsey, W., et al. (2017). TEEN HEED: Design of a clinical-community youth diabetes prevention intervention. Contemporary Clinical Trials, 57, 23–28.

    Article  Google Scholar 

  18. Lo, S. M., Lin, W. H., Chen, C. Y., et al. (2017). Optimal coloring for data collection in tree-based wireless sensor networks. Theoretical Computer Science, 700, 23–36.

    Article  MathSciNet  Google Scholar 

  19. Jasaswi, P. M., Mandal, C., & Reade, C. (2017). Distributed construction of minimum connected dominating set in wireless sensor network using two-hop information. Computer Networks, 123, 137–152.

    Article  Google Scholar 

  20. Zhou, X., Liu, Y. H., Wang, J., & Li, C. (2017). A density based link clustering algorithm for overlapping community detection in networks. Physica A: Statistical Mechanics and its Applications, 486, 65–78.

    Article  Google Scholar 

  21. Dabrowski, K. K., & Paulusma, D. (2017). Contracting bipartite graphs to paths and cycles. Information Processing Letters, 127, 37–42.

    Article  MathSciNet  Google Scholar 

  22. Zhao, D., Huang, Z. Y., Li, H. Y., et al. (2017). An improved EEMD method based on the adjustable cubic trigonometric cardinal spline interpolation. Digital Signal Processing, 64, 41–48.

    Article  MathSciNet  Google Scholar 

  23. Park, B., Sohn, H., & Liu, P. (2017). Accelerated noncontact laser ultrasonic scanning for damage detection using combined binary search and compressed sensing. Mechanical Systems and Signal Processing, 92, 315–333.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61771186), Postdoctoral Research Project of Heilongjiang Province (LBH-Q15121), Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province (UNPYSCT-2017125), Modern Sensor Technology Research and Innovation Team Foundation of Heilongjiang Province (2012TD007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danyang Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, D., Ji, P., Yang, S. et al. An efficient data collection and load balance algorithm in wireless sensor networks. Wireless Netw 25, 3703–3714 (2019). https://doi.org/10.1007/s11276-017-1652-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1652-5

Keywords

Navigation