Wireless Networks

, Volume 24, Issue 5, pp 1841–1855 | Cite as

Energy efficient resource allocation in two-tier OFDMA networks with QoS guarantees

  • Meysam Masoudi
  • Hamidreza Zaefarani
  • Abbas Mohammadi
  • Cicek Cavdar


In this paper, we introduce the joint power and subchannel allocations techniques for OFDMA based femtocell networks with focus on uplink direction. These techniques minimize the aggregate power of all Femto user equipment and maximize the total system energy efficiency while satisfying the minimum required rate of all users. An interference limit constraint is also considered to protect the QoS of macrocells . The original problem is a mixed-integer non-convex optimization problem which is converted to a convex problem using the time-sharing concept. Furthermore, Three algorithms are proposed to provide a scheme to optimize the goal function while meeting the constraints. The complexity order of all algorithms was investigated and was compared to other alternative solutions. The analytic and simulation results have demonstrated that the proposed algorithms could achieve significant power saving and better energy efficiency compared to existing algorithms.


Femtocell Resource Allocation Power Minimizations Energy Efficiency Convex Optimization 


  1. 1.
    Mansfield, G. (2008). Femtocells in the US market-business drivers and consumer propositions. FemtoCells Europe, 1927–1948.Google Scholar
  2. 2.
    Sun, Y., Jover, R. P., & Wang, X. (2012). Uplink interference mitigation for ofdma femtocell networks. IEEE Transactions on Wireless Communications, 11(2), 614–625.CrossRefGoogle Scholar
  3. 3.
    Tang, J., So, D. K., Alsusa, E., Hamdi, K. A., & Shojaeifard, A. (2015). Resource allocation for energy efficiency optimization in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 33(10), 2104–2117.CrossRefGoogle Scholar
  4. 4.
    Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys & Tutorials, 16(4), 2142–2180. doi: 10.1109/COMST.2014.2326303.CrossRefGoogle Scholar
  5. 5.
    Xia, P., Chandrasekhar, V., & Andrews, J. G. (2010). Open vs. closed access femtocells in the uplink. IEEE Transactions on Wireless Communications, 9(12), 3798–3809.CrossRefGoogle Scholar
  6. 6.
    Ahuja, K., Xiao, Y., & van der Schaar, M. (2015). Efficient interference management policies for femtocell networks. IEEE Transactions on Wireless Communications, PP(99), 1–1.Google Scholar
  7. 7.
    El-atty, S. M. A., & Gharsseldien, Z. M. (2016). Performance analysis of an advanced heterogeneous mobile network architecture with multiple small cell layers. Wireless Networks, pp. 1–22.Google Scholar
  8. 8.
    Lee, Y. L., Loo, J., Chuah, T. C., & El-Saleh, A. A. (2016). Fair resource allocation with interference mitigation and resource reuse in lte/lte-a femtocell networks. IEEE Transactions on Vehicular Technology, 65(10), 8203–8217. doi: 10.1109/TVT.2016.2514535.CrossRefGoogle Scholar
  9. 9.
    Mao, T., Feng, G., Liang, L., Qin, S., & Wu, B. (2015). Distributed energy-efficient power control for macro-femto networks. IEEE Transactions on Vehicular Technology, PP(99), 1–1.Google Scholar
  10. 10.
    Abdelnasser, A., Hossain, E., & Kim, D. I. (2014). Clustering and resource allocation for dense femtocells in a two-tier cellular ofdma network. IEEE Transactions on Wireless Communications, 13(3), 1628–1641.CrossRefGoogle Scholar
  11. 11.
    López-Pérez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2014). Power minimization based resource allocation for interference mitigation in ofdma femtocell networks. IEEE Journal on Selected Areas in Communications, 32(2), 333–344.CrossRefGoogle Scholar
  12. 12.
    Han, T., Mao, G., Li, Q., Wang, L., & Zhang, J. (2015). Interference minimization in 5g heterogeneous networks. Mobile Networks and Applications, 20(6), 756–762.CrossRefGoogle Scholar
  13. 13.
    Le, L. B., Niyato, D., Hossain, E., Kim, D. I., & Hoang, D. T. (2013). Qos-aware and energy-efficient resource management in ofdma femtocells. IEEE Transactions on Wireless Communications, 12(1), 180–194.CrossRefGoogle Scholar
  14. 14.
    Ngo, D. T., Khakurel, S., & Le-Ngoc, T. (2014). Joint subchannel assignment and power allocation for ofdma femtocell networks. IEEE Transactions on Wireless Communications, 13(1), 342–355.CrossRefGoogle Scholar
  15. 15.
    Alitaleshi, A., Ghazizadeh, R., & Kalbkhani, H. (2016). Ameliorated resource allocation in two-tier femtocell–macrocell networks with six directional antennas for macrocells. Wireless Personal Communications, 86(3), 1493–1508. doi: 10.1007/s11277-015-3002-1.CrossRefGoogle Scholar
  16. 16.
    Shahid, A., Aslam, S., Kim, H. S., & Lee, K.-G. (2014). Distributed joint resource and power allocation in self-organized femtocell networks: A potential game approach. Journal of Network and Computer Applications, 46, 280–292.CrossRefGoogle Scholar
  17. 17.
    Ge, X., Han, T., Zhang, Y., Mao, G., Wang, C.-X., Zhang, J., et al. (2014). Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology, 63(3), 1306–1319.CrossRefGoogle Scholar
  18. 18.
    Jung, H. B., & Kim, D. K. (2013). Power control of femtocells based on max-min fairness in heterogeneous networks. IEEE Communications Letters, 17(7), 1372–1375.CrossRefGoogle Scholar
  19. 19.
    Sharma, N., Badheka, D., & Anpalagan, A. (2014). Multiobjective subchannel and power allocation in interference-limited two-tier ofdma femtocell networks. IEEE Systems Journal, PP(99), 1–12.Google Scholar
  20. 20.
    Gheitanchi, S., Ali, F., & Stipidis, E. (2010). Particle swarm optimization for adaptive resource allocation in communication networks. EURASIP Journal on Wireless Communications and Networking, 2010, 2.CrossRefGoogle Scholar
  21. 21.
    Wang, H., & Ding, Z. (2015). Power control and resource allocation for outage balancing in femtocell networks. IEEE Transactions on Wireless Communications, 14(4), 2043–2057.CrossRefGoogle Scholar
  22. 22.
    Zhang, H., Jiang, C., Beaulieu, N., Chu, X., Wang, X., & Quek, T. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, PP(99), 1–1.Google Scholar
  23. 23.
    Haider, F., Wang, C.-X., Ai, B., Haas, H., & Hepsaydir, E. (2016). Spectral/energy efficiency tradeoff of cellular systems with mobile femtocell deployment. IEEE Transactions on Vehicular Technology, 65(5), 3389–3400.CrossRefGoogle Scholar
  24. 24.
    An, C., Xie, R., Ji, H., & Li, Y. (2015). Pricing and power control for energy-efficient radio resource management in cognitive femtocell networks. International Journal of Communication Systems, 28(4), 743–761.CrossRefGoogle Scholar
  25. 25.
    Miao, G., Himayat, N., Li, G. Y., & Talwar, S. (2011). Distributed interference-aware energy-efficient power optimization. IEEE Transactions on Wireless Communications, 10(4), 1323–1333.CrossRefGoogle Scholar
  26. 26.
    Xu, L., Yu, G., & Jiang, Y. (2015). Energy-efficient resource allocation in single-cell ofdma systems: Multi-objective approach. IEEE Transactions on Wireless Communications, 14(10), 5848–5858. doi: 10.1109/TWC.2015.2443104.CrossRefGoogle Scholar
  27. 27.
    Li, Y., Celebi, H., Daneshmand, M., Wang, C., & Zhao, W. (2013). Energy-efficient femtocell networks: challenges and opportunities. IEEE Wireless Communications, 20(6), 99–105.CrossRefGoogle Scholar
  28. 28.
    Mili, M. R., & Hamdi, K. A. (2012). On the minimum transmit power in cochannel femtocells. IEEE Communications Letters, 16(7), 1026–1029.CrossRefGoogle Scholar
  29. 29.
    Zhang, H., Jiang, C., Beaulieu, N., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing ofdma femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.CrossRefGoogle Scholar
  30. 30.
    De La Roche, G., Valcarce, A., López-Pérez, D., & Zhang, J. (2010). Access control mechanisms for femtocells. IEEE Communications Magazine, 48(1), 33–39.CrossRefGoogle Scholar
  31. 31.
    E. U. T. R. Access, (2010). Further advance-ments for e-utra physical layer aspects. textitTech. Rep. 3GPP TR 36.814.Google Scholar
  32. 32.
    Miao, G., Himayat, N., Li, G. Y., & Talwar, S. (2012). Low-complexity energy-efficient scheduling for uplink ofdma. IEEE Transactions on Communications, 60(1), 112–120.CrossRefGoogle Scholar
  33. 33.
    Miao, G., Himayat, N., & Li, G. Y. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications, 58(2), 545–554.CrossRefGoogle Scholar
  34. 34.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  35. 35.
    Wong, C. Y., Cheng, R. S., Lataief, K. B., & Murch, R. D. (1999). Multiuser ofdm with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.CrossRefGoogle Scholar
  36. 36.
    Yu, W., & Lui, R. (2006). Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.CrossRefGoogle Scholar
  37. 37.
    Yun, J.-H., & Shin, K. G. (2011). Adaptive interference management of ofdma femtocells for co-channel deployment. IEEE Journal on Selected Areas in Communications, 29(6), 1225–1241.CrossRefGoogle Scholar
  38. 38.
    Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Son, K., Lee, S., Yi, Y., & Chong, S. (2011). Refim: A practical interference management in heterogeneous wireless access networks. IEEE Journal on Selected Areas in Communications, 29(6), 1260–1272.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Microwave and Wireless Communication Research Laboratory, Electrical Engineering DepartmentAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  2. 2.Wireless@KTH, KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations