Wireless Networks

, Volume 24, Issue 5, pp 1739–1754 | Cite as

Hybrid data dissemination protocol (HDDP) for wireless sensor networks

Article
  • 107 Downloads

Abstract

Wireless sensor networks (WSNs) are often used for monitoring environmental conditions. One of the most important tasks in a WSN is to gather sensed data for the users to utilize the network with adequate flexibility. In this process, it is also very important to employ energy-efficient communication protocols since sensor nodes are usually battery-powered and hence their lifetimes are relatively short. Considering these practical aspects of WSN deployment for various types of application scenarios, in this paper, we propose a data query dissemination scheme and data gathering solution. By considering energy conservation and latency, we provide parameterized query which can be adapted according to the user’s profile to collect the required readings from sensor nodes. Simulation results prove that the proposed protocol is more energy-efficient compared to the other alternatives of the same kind.

Keywords

Wireless sensor network Data dissemination Energy consumption Latency Query Data gathering 

Notes

Acknowledgements

We thank the anonymous reviewers for their constructive comments and suggestion, which helped us to improve the content, quality, and presentation of this paper.

References

  1. 1.
    Bachir, A., Dohler, M., Watteyne, T., & Leung, K. (2010). MAC essentials for wireless sensor networks. IEEE Communications Surveys & Tutorials, 12(2), 222–248.CrossRefGoogle Scholar
  2. 2.
    Chakrabarti, A, Sabharwal, A., & Aazhang, B. (2003). Using predictable observer mobility for power efficient design of sensor networks. In Proceedings of the 2nd international conference on information processing in sensor networks (IPSN’03), pp. 129–145.Google Scholar
  3. 3.
    Domenico, A. D., Strinati, E. C., & Benedetto, M. G. D. (2012). A survey on MAC strategies for cognitive radio networks. IEEE Communications Surveys & Tutorials, 14(1), 21–44.CrossRefGoogle Scholar
  4. 4.
    Tumer, A. E., & Gunduz, M. (2010). Energy-efficient and fast data gathering protocols for indoor wireless sensor networks. Sensors, 10, 8054–8069.CrossRefGoogle Scholar
  5. 5.
    El-Hoiydi, A. (2002). Aloha with preamble sampling for sporadic traffic in ad hoc wireless sensor networks. In Proceedings of IEEE international conference on communications, April 2002.Google Scholar
  6. 6.
    El-Hoiydi, A. (2002). Spatial TDMA and CSMA with preamble sampling for low power ad hoc wireless sensor networks. In Proceedings of ISCC 2002, seventh international symposium on computers and communications, 1–4 July 2002, pp. 685–692.Google Scholar
  7. 7.
    El-Hoiydi, A., & Decotignie, J. D. (2004). WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. In Proceedings of the international workshop on algorithmic aspects of wireless sensor networks (algosensors), lecture notes in computer science, pp. 18–31. ISBN 3-540-22476-9.Google Scholar
  8. 8.
    Gonga, A., Landsiedel, O., & Johansson, M. (2011). MobiSense: Power-efficient micro-mobility in wireless sensor networks. In Proceedings of the 7th IEEE international conference on distributed computing in sensor systems, IEEE DCOSS’11, Barcelona, Spain, pp. 1–8. URL: http://www.cse.chalmers.se/~olafl/papers/2011-06-dcoss-gonga-mobisense.pdf.
  9. 9.
    Howard, A., Mataric, M., & Sukhatme, G. (2002). Mobile sensor network deployment using potential fields: A distributed. In Proceedings of the 6th international symposium on distributed autonomous robotics systems (DARS02), June 2002.Google Scholar
  10. 10.
    Karmouch, A., & Hashish, S. (2010). Deployment-based solution for prolonging network lifetime in sensor networks. Proceedings of IFIP International Federation for Information Processing, 264, 85–96.Google Scholar
  11. 11.
    Meghanathan, N. (2012). Link expiration time and minimum distance spanning trees based distributed data gathering algorithms for wireless mobile sensor networks. International Journal of Communication Networks and Information Security, 4(3), 196–206.Google Scholar
  12. 12.
    Shah, R. C., & Rabaey, H. M. (2002). Energy aware routing for low energy ad hoc sensor networks. IEEE Wireless Communications and Networking Conference (WCNC), 1, 350–355. doi: 10.1109/WCNC.2002.993520.Google Scholar
  13. 13.
    Rajagopalan, R., & Varshney, P. K. (2006). Data-aggregation techniques in sensor networks: A survey. IEEE Communications Surveys & Tutorials, 8(4), 48–63.CrossRefGoogle Scholar
  14. 14.
    Wang, F., & Liu, J. (2011). Networked wireless sensor data collection: Issues, challenges, and approaches. IEEE Communications Surveys & Tutorials, 13(4), 673–687.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Milenkovic, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 29, 2521–2533.CrossRefGoogle Scholar
  16. 16.
    Yadav, S., & Yadav, R. S. (2016). A review on energy efficient protocols in wireless sensor networks. Wireless Networks, 22, 335–350.CrossRefGoogle Scholar
  17. 17.
    Lundquist, J. D., Cayan, D. R., & Dettinger, M. D. (2003). Meteorology and hydrology in yosemite national park: A sensor network application. IPSN, LNCS, 2634, 518–528.MATHGoogle Scholar
  18. 18.
    Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., & Culler, D. (2004). An analysis of a large scale habitat monitoring application. In SenSys, pp. 214–226.Google Scholar
  19. 19.
    Chu, M., Haussecker, H., & Zhao, F. (2002). Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks. The International Journal of High Performance Computing Applications, 16(3), 293–313.CrossRefGoogle Scholar
  20. 20.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, Elsevier, 3(3), 325–349.CrossRefGoogle Scholar
  21. 21.
    Singh, S., Singh, M., & Singh, D. (2010). Routing protocols in wireless sensor networks—A survey. International Journal of Computer Science & Engineering Survey, 1(2), 63–83.CrossRefGoogle Scholar
  22. 22.
    Al-Karaki, J., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Communications Magazine, 11(6), 6–28.CrossRefGoogle Scholar
  23. 23.
    Guerroumi, M., Pathan, A. S. K., Badache, N., & Moussaoui, S. (2013). Strengths and weaknesses of prominent data dissemination techniques in wireless sensor networks. International Journal of Communication Networks and Information Security, 5(3), 158–177.Google Scholar
  24. 24.
    Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. In ACM transactions on sensor networks, Article 7, Vol. 8, No. 1, 31pp, August 2011. doi: 10.1145/1993042.1993049.
  25. 25.
    Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd international conference on system sciences(HICSS’00), Jan 2000, Vol. 2, pp. 10–19.Google Scholar
  26. 26.
    Manjeshwar, A., & Agarwal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In 1st international workshop on parallel and distributed computing issues in wireless networks and mobile computing, April 2001.Google Scholar
  27. 27.
    Manjeshwar, A. & Agarwal, D. P. (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In Parallel and distributed processing symposium, proceedings international, pp. 195–202.Google Scholar
  28. 28.
    Lindsey, S., & Raghavendra, C. (2002). PEGASIS: Power-efficient gathering in sensor information systems. IEEE Aerospace Conference Proceedings, 3, 1125–1130.Google Scholar
  29. 29.
    Gerhard, P., Hancke, C., & Leuschner, C. J. (2007). SEER: A simple energy efficient routing protocol for wireless sensor networks. South African Computer Journal, 39, 17–24.Google Scholar
  30. 30.
    Liu, M., Cao, J. N., Chen, G. H., & Wang, X. M. (2009). An energy-aware routing protocol in wireless sensor networks. Sensors, 9(1), 445–462.CrossRefGoogle Scholar
  31. 31.
    He, T., Stankovic, J. A., Lu, C., & Abdelzaher, T. F. (2003). SPEED: A stateless protocol for real-time communication in ad hoc sensor networks. In International Conference on Distributed Computing Systems (ICDCS ‘03), May 2003, USA, pp. 46–55.Google Scholar
  32. 32.
    Felemban, E., Lee, C., & Ekici, E. (2006). MMSPEED: Multipath multi-SPEED protocol for Qos guarantee of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(6), 738–754.CrossRefGoogle Scholar
  33. 33.
    Wang, Y., Tsai, C., & Mao, H. (2006). HMRP: Hierarchy-based multipath routing protocol for wireless sensor networks. Tamkang Journal of Science and Engineering, 9(3), 255–264.Google Scholar
  34. 34.
    Kim, S., Son, S., Stankovic, J., & Choi, Y. (2004). Data dissemination over wireless sensor networks. IEEE Communications Letters, 8(9), 561–563.CrossRefGoogle Scholar
  35. 35.
    Zheng, H., Yang, F., Tian, X., Gan, X., Wang, X., & Xiao, S. (2015). Data gathering with compressive sensing in wireless sensor networks: A random walk based approach. IEEE Transactions on Parallel and Distributed Systems, 26(1), 35–44.CrossRefGoogle Scholar
  36. 36.
    Ji, S., Beyah, R., & Cai, Z. (2014). Snapshot and continuous data collection in probabilistic wireless sensor networks. IEEE Transactions on Mobile Computing, 13(3), 626–637.CrossRefGoogle Scholar
  37. 37.
    Ji, S., He, J., Uluagac, A. S., Beyah, R., & Li, Y. (2013). Cell-based snapshot and continuous data collection in wireless sensor networks. ACM Transactions on Sensor Networks, 9(4), 1–29.CrossRefGoogle Scholar
  38. 38.
    Ji, S., & Cai, Z. (2013). Distributed data collection in large-scale asynchronous wireless sensor networks under the generalized physical interference model. IEEE/ACM Transactions on Networking, 21(4), 1270–1283.CrossRefGoogle Scholar
  39. 39.
    Zhu, X., Tang, B., & Gupta, H. (2005). Delay efficient data gathering in sensor networks. In Proceedings of first international conference mobile ad-hoc and sensor networks (MSN), 2005.Google Scholar
  40. 40.
    Chen, S., Tang, S., Huang, M, & Wang, Y. (2010). Capacity of data collection in arbitrary wireless sensor networks. In Proceedings of IEEE INFOCOM, 2010.Google Scholar
  41. 41.
    Ji, S., Li, Y., & Jia, X. (2011) Capacity of dual-radio multi-channel wireless sensor networks for continuous data collection. In Proceedings of IEEE INFOCOM.Google Scholar
  42. 42.
    Ji, S., Cai, Z., Li, Y., & Jia, X. (2012). Continuous data collection capacity of dual-radio multi-channel wireless sensor. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1844–1855.CrossRefGoogle Scholar
  43. 43.
    Ji, S., & Cai, Z. (2012). Distributed data collection and its capacity in asynchronous wireless sensor networks. In Proceedings of IEEE INFOCOM.Google Scholar
  44. 44.
    Chen, S., Wang, Y., Li, X.-Y., & Shi, X. (2009). Data collection capacity of random-deployed wireless sensor networks. In Proceedings of IEEE GlobeCom, 2009.Google Scholar
  45. 45.
    Chen, S., Wang, Y., Li, X.-Y., & Shi, X. (2009). Order-optimal data collection in wireless sensor networks: delay and capacity. In Proceedings of IEEE communications society conference on sensor, mesh and ad hoc communication and networks (SECON).Google Scholar
  46. 46.
    Ji, S., Beyah, R., & Li, Y. (2011). Continuous data collection capacity of wireless sensor networks under physical interference model. In Proceedings of IEEE eighth international conference on mobile ad-hoc and sensor systems (MASS).Google Scholar
  47. 47.
    Ji, S., Beyah, R., & Cai, Z. (2012). Snapshot/continuous data collection capacity for large-scale probabilistic wireless sensor networks. In Proceedings of IEEE INFOCOM.Google Scholar
  48. 48.
    Ekici, E., Gu, Y., & Bozdag, D. (2006). Mobility-based communication in wireless sensor networks. IEEE Communications Magazine, 44(7), 56–62.CrossRefGoogle Scholar
  49. 49.
    Khan, M., Gansterer, W., & Haring, G. (2007). Congestion avoidance and energy efficient routing protocol for wireless sensor networks with a mobile sink. Journal of Networks, 2(6), 42–49.CrossRefGoogle Scholar
  50. 50.
    Vecchio, M., Viana, A., Ziviani, A., & Friedman, R. (2010). DEEP: Density-based proactive data dissemination protocol for wireless sensor networks with uncontrolled sink mobility. Computer Communications, 33(8), 929–939.CrossRefGoogle Scholar
  51. 51.
    Kinalis, A., Nikoletseas, S., Patroumpa, D., & Rolim, J. (2014). Biased sink mobility with adaptive stop times for low latency data collection in sensor networks. Information Fusion, Elsevier, 15, 56–63.CrossRefGoogle Scholar
  52. 52.
    Xuan, H., & Lee, S. (2004). A coordination-based data dissemination protocol for wireless sensor networks. In Proceedings of the intelligent sensors, sensor networks and information processing conference, December 2004, pp. 13–18.Google Scholar
  53. 53.
    Luo, H., Ye, F., Cheng, J., Lu, S., & Zhang, L. (2005). TTDD: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Networks, 11(1–2), 161–175.CrossRefGoogle Scholar
  54. 54.
    Hashish, S., & Karmouch, A. (2010). An adaptive rendezvous data dissemination for irregular sensor networks with multiple sinks. Computer Communications, 33(2), 176–189.CrossRefGoogle Scholar
  55. 55.
    Fang, Q., Gao, J., & Guibas, L. J. (2006). Locating and bypassing routing holes in sensor networks. Mobile Networks and Applications, 11(2), 187–200.CrossRefGoogle Scholar
  56. 56.
    Gautam, N., Sofat, S., & Vig, R. (2015). Data collection model for energy-efficient wireless sensor networks. Annals of Telecommunications, 70, 501–511.CrossRefGoogle Scholar
  57. 57.
    Kumar, A. K., Sivalingam, K. M., & Kumar, A. (2013). On reducing delay in mobile data collection based wireless sensor networks. Wireless Networks, 19, 285–299.CrossRefGoogle Scholar
  58. 58.
    Guerroumi, M., Badache, N., & Moussaoui, S. (2011). Data dissemination and power management in wireless sensor networks. Advances in Computing and Communications, Communications in Computer and Information Science, 193(6), 593–607. doi: 10.1007/978-3-642-22726-4_6.CrossRefGoogle Scholar
  59. 59.
    8.4 The Distance Between Points. http://www.charleston.k12.il.us/cms/Teachers/math/PreAlgebra/paunit8/L8-4.PDF. Accessed 26 May 2015.
  60. 60.
    Rajagopalan, R., & Varshney, P. K. (2006). Data-aggregation techniques in sensor networks: A survey. IEEE Communications Surveys and Tutorials, 8(4), 48–63.CrossRefGoogle Scholar
  61. 61.
    Zheng, H., Yang, F., Tian, X., Gan, X., Wang, X., & Xiao, S. (2015). Data gathering with compressive sensing in wireless sensor networks: A random walk based approach. IEEE Transactions on Parallel and Distributed Systems, 26(1), 35–44.CrossRefGoogle Scholar
  62. 62.
    Gao, D., Liu, Y., Zhang, F., & Song, J. (2014). Data aggregation routing for rechargeable wireless sensor networks in forest monitoring. Wireless Personal Communications, 79(1), 773–788.CrossRefGoogle Scholar
  63. 63.
    Gopikrishnan, S., & Priakanth, P. (2016). HSDA: Hybrid communication for secure data aggregation in wireless sensor network. Wireless Networks, 22(3), 1061–1078.CrossRefGoogle Scholar
  64. 64.
    Asemani, M., & Esnaashari, M. (2015). Learning automata based energy efficient data aggregation in wireless sensor networks. Wireless Networks, 21(6), 2035–2053.CrossRefGoogle Scholar
  65. 65.
    Bagrodia, R., Zeng, X., & Gerla, M. (1999). GloMoSim—A Library for parallel simulation of large-scale wireless networks. Workshop on parallel and distributed simulation, California at Los Angles, pp. 154–161.Google Scholar
  66. 66.
    Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd international conference on Embedded networked sensor systems, Baltimore, MD: ACM Press Vol. 2, pp. 95–107. ACM 2004.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUSTHB UniversityBab EzzouarAlgeria
  2. 2.Department of Computer Science and EngineeringSoutheast UniversityDhakaBangladesh
  3. 3.Faculty of Computer and Information SystemsIslamic University in MadinahMedinaKingdom of Saudi Arabia

Personalised recommendations