Wireless Networks

, Volume 24, Issue 5, pp 1543–1559 | Cite as

NS-2 based simulation framework for cognitive radio sensor networks

  • Syed Hashim Raza Bukhari
  • Sajid Siraj
  • Mubashir Husain Rehmani


In this paper, we propose a simulation model for cognitive radio sensor networks (CRSNs) which is an attempt to combine the useful properties of wireless sensor networks and cognitive radio networks. The existing simulation models for cognitive radios cannot be extended for this purpose as they do not consider the strict energy constraint in wireless sensor networks. Our proposed model considers the limited energy available for wireless sensor nodes that constrain the spectrum sensing process—an unavoidable operation in cognitive radios. Our model has been thoroughly tested by performing experiments in different scenarios of CRSNs. The results generated by the model have been found accurate which can be considered for realization of CRSNs.


Cognitive radio Dynamic spectrum access Wireless sensor networks Cognitive radio sensor networks Simulation model 


  1. 1.
    The network simulator NS-2 (1995).Google Scholar
  2. 2.
    A simulation framework for sensor networks (2003).Google Scholar
  3. 3.
    Manna sim framework (2002).Google Scholar
  4. 4.
    Mixim framework (2011).Google Scholar
  5. 5.
    NRL sensorsim (2005).Google Scholar
  6. 6.
    Java in simulation time/scalabale wireless adhoc network simulator (2004).Google Scholar
  7. 7.
    Sensor security simulator (s3) (2005).Google Scholar
  8. 8.
    Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.CrossRefGoogle Scholar
  9. 9.
    Steenkiste, P., Sicker, D., Minden, G., & Raychaudri, D. (2009) Future directions in cognitive radio network research. Technical report Vol. 4, No. 1, National Science Foundation Workshop Report.Google Scholar
  10. 10.
    Bukhari, S. H. R., Rehmani, M. H., & Siraj, S. (2016). A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Communications Surveys & Tutorials, 18(2), 924–948.CrossRefGoogle Scholar
  11. 11.
    Esmaeelzadeh, V., Berangi, R., Sebt, S. M., Hosseini, E. S., & Parsinia, M. (2013). Cogns: A simulation framework for cognitive radio networks. Wireless Personal Communcations Google Scholar
  12. 12.
    Khan, S. N., Kalil, M. A., & Mitschele-Thiel, A. (2013). crSimulator: A discrete simulation model for cognitive radio ad hoc networks in OMNeT++. In Wireless and mobile networking conference (WMNC).Google Scholar
  13. 13.
    Lee, P., & Wei, G. (2009). NS2 model for cognitive radio networks routing. In IEEE international symposium on computer network and multimedia technology.Google Scholar
  14. 14.
    Al-Ali, A. K., & Chowdhury, K. (2013). TFRC-CR: An equation-based transport protocol for cognitive radio networks. Ad Hoc Networks, 11, 1836–1847.CrossRefGoogle Scholar
  15. 15.
    Di Felice, M., Chowdhury, K. R., Kim, W., Kassler, A., & Bononi, L. (2011). End-to-end protocols for cognitive radio ad hoc networks. Performance Evaluation, 68, 859–875.CrossRefGoogle Scholar
  16. 16.
    Cognitive radio cognitive network simulator (2013).Google Scholar
  17. 17.
    Singh, N., Dua, R. L., & Mathur, V. (2012). Network simulator ns2-2.35. International Journal of Advanced Research in Computer Science and Software Engineering, 2, 224–228.Google Scholar
  18. 18.
    Zhou, H.-Y., Luo, D.-Y., Gao, Y., & Zuo, D.-C. (2011). Modeling of node energy consumption for wireless sensor networks. Wireless Sensor Network, 3, 18–23.CrossRefGoogle Scholar
  19. 19.
    Li, X., Wang, D., McNair, J., & Chen, J. (2014). Dynamic spectrum access with packet size adaptation and residual energy balancing for energy-constrained cognitive radio sensor networks. Journal of Network and Computer Applications, 41, 157–166.CrossRefGoogle Scholar
  20. 20.
    Ozan Bicen, A., Cagri Gungor, V., & Akan, O. B. (2012). Delay-sensitive and multimedia communication in cognitive radio sensor networks. Ad Hoc Networks, 10(5), 816–830.CrossRefGoogle Scholar
  21. 21.
    Phuong, T. M., & Kim, D.-S. (2013). Robust distributed power control for cognitive radio based industrial wireless sensor networks. In Proceedings of international conferences sensors (Vol. 41, pp. 9–12).Google Scholar
  22. 22.
    Zhang, H., Zhang, Z., Chen, X., & Yin, R. (2011). Energy efficient joint source and channel sensing in cognitive radio sensor networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.Google Scholar
  23. 23.
    Jalil Piran, M., Chzo, Y., Yun, J., Ali, A., & Suh, D. Y. (2014). Cognitive radio-based vehicular ad hoc and sensor networks. International Journal of Distributed Sensor Networks, 2014.Google Scholar
  24. 24.
    Gao, S., Qian, L., Vaman, D. R., & Qu, Q. (2007). Energy efficient adaptive modulation in wireless cognitive radio sensor networks. In 2007 IEEE international conference on communications (pp. 3980–3986). IEEE.Google Scholar
  25. 25.
    Gao, S., Qian, L., & Vaman, D. R. (2008). Distributed energy efficient spectrum access in wireless cognitive radio sensor networks. In 2008 IEEE wireless communications and networking conference (pp. 1442–1447). IEEE.Google Scholar
  26. 26.
    Khan, Z., Lehtomaki, J., Umebayashi, K., & Vartiainen, J. (2010). On the selection of the best detection performance sensors for cognitive radio networks. IEEE Signal Processing Letters, 17(4), 359–362.CrossRefGoogle Scholar
  27. 27.
    Kuo, C.-H., & Chen, T.-S. (2011). PN-WSNA: an approach for reconfigurable cognitive sensor network implementations. IEEE Sensors Journal, 11(2), 319–334.CrossRefGoogle Scholar
  28. 28.
    Liang, Z., Feng, S., Zhao, D., & Shen, X. S. (2011). Delay performance analysis for supporting real-time traffic in a cognitive radio sensor network. IEEE Transactions on Wireless Communications, 10(1), 325–335.CrossRefGoogle Scholar
  29. 29.
    Han, J. A., Jeon, W. S., & Jeong, D. G. (2011). Energy-efficient channel management scheme for cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 60(4), 1905–1910.CrossRefGoogle Scholar
  30. 30.
    Li, X., Wang, D., McNair, J., & Chen, J. (2011). Residual energy aware channel assignment in cognitive radio sensor networks. In 2011 IEEE wireless communications and networking conference (pp. 398–403). IEEE.Google Scholar
  31. 31.
    Hu, Z., Sun, Y., & Ji, Y. (2011). A dynamic spectrum access strategy based on real-time usability in cognitive radio sensor networks. In Mobile Ad-hoc and sensor networks (MSN), 2011 seventh international conference on (pp. 318–322). IEEE.Google Scholar
  32. 32.
    Oto, M. C., & Akan, O. B. (2012). Energy-efficient packet size optimization for cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 11(4), 1544–1553.CrossRefGoogle Scholar
  33. 33.
    Askari, M., Kavian, Y. S., Kaabi, H. & Rashvand, H. F. (2012). A channel assignment algorithm for cognitive radio wireless sensor networks. In Wireless sensor systems (WSS 2012), IET conference on (pp. 1–4). IET.Google Scholar
  34. 34.
    Solares, J. R. A., Rezki, Z., & Alouini, M.-S. (2012). Optimal power allocation of a single transmitter-multiple receivers channel in a cognitive sensor network. In 2012 international conference on wireless communications in underground and confined areas, ICWCUCA 2012.Google Scholar
  35. 35.
    Hasan, N.U., Ejaz, W., Lee, S., & Kim, H. S. (2012). Knapsack-based energy-efficient node selection scheme for cooperative spectrum sensing in cognitive radio sensor networks. IET Communications, 6(17), 2998–3005.CrossRefGoogle Scholar
  36. 36.
    Hareesh, K., & Singh, P. (2013). An energy efficient hybrid co-operative spectrum sensing technique for CRSN. In Automation, computing, communication, control and compressed sensing (iMac4s), 2013 international multi-conference on (pp. 438–442). IEEE.Google Scholar
  37. 37.
    Shah, G. A., Alagoz, F., & Fadel, E. A. (2014). A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 63(7), 3369–3380.CrossRefGoogle Scholar
  38. 38.
    Zhang, H., Zhang, Z., Dai, H., Yin, R., & Chen, X. (2011). Distributed spectrum-aware clustering in cognitive radio sensor networks. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE (pp. 1–6). IEEE.Google Scholar
  39. 39.
    Object oriented modular discrete event network simulation framework (2003).Google Scholar
  40. 40.
    Yuan, Y., Bahl, P., Chandra, R., & Chou, P. (2007). KNOWS: Cognitive radio networks over white spaces. In International symposium on new frontiers in dynamic spectrum access networks (pp. 416–427).Google Scholar
  41. 41.
    Rehmani, M. H., Viana, A. C., Khalife, H., & Fdida, S. (2013). SURF: A distributed channel selection strategy for data dissemination in multi-hop cognitive radio networks. Computer Communications, 36(10), 1172–1185.CrossRefGoogle Scholar
  42. 42.
    Ros, F. J., Martinez, J. A., & Ruiz, P. M. (2014). A survey on modeling and simulation of vehicular networks: Communications, mobility, and tools. Computer Communications, 43, 1–15.CrossRefGoogle Scholar
  43. 43.
    Parris, I., Abdesslem, F. B., & Henderson, T. (2014). Facebook or fakebook? The effects of simulated mobile applications on simulated mobile networks. Ad Hoc Networks, 12, 35–49.CrossRefGoogle Scholar
  44. 44.
    Rehmani, M. H., & Saleem, Y. (2015). Network simulator NS-2, chapter 615 (pp. 6249 – 6258). IGI-Global.Google Scholar
  45. 45.
    Liu, J., Nishiyama, H., Kato, N., Kumagai, T., & Takahara, A. (2013). Toward modeling ad hoc networks: Current situation and future direction. IEEE Wireless Communications, 20, 51–58.CrossRefGoogle Scholar
  46. 46.
    Andel, T. R., & Yasinsac, A. (2006). On the credibility of manet simulations. IEEE Computer Society, 39, 48–54.CrossRefGoogle Scholar
  47. 47.
    Cavin, D., Sasson, Y., & Schiper, A. (2002). On the accuracy of manet simulators. In Proceedings of the second ACM international workshop on principles of mobile computing.Google Scholar
  48. 48.
    Yu, R., Zhang, Y., Gjessing, S., Yuen, C., Xie, S., & Guizani, M. (2011). Cognitive radio based hierarchical communications infrastructure for smart grid. IEEE Network, 25, 6–14.CrossRefGoogle Scholar
  49. 49.
    Li, W., & Zhang, X. (2014). Simulation of the smart grid communications: Challenges, techniques, and future trends. Computers and Electrical Engineering, 40, 270–288.CrossRefGoogle Scholar
  50. 50.
    Wang, J., Ghosh, M., & Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communication Magazine, 49(3), 74–81.CrossRefGoogle Scholar
  51. 51.
    Issariyakul, T., & Hossain, E. (2009). Introduction to Network simulator NS2. Berlin: Springer.CrossRefGoogle Scholar
  52. 52.
    Khan, Z. A., & Rehmani, M. H. (2010). A tutorial on broadcasting packets over multiple-channels in a multi-inferface network setting in ns-2. Technical report, LEAT, CNRS, University of Nice Sophia Antipolis, France and Lip6/Universtie Pierre et Marie Curie (UPMC) Paris, France.Google Scholar
  53. 53.
    Saleem, Y., & Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1–16.CrossRefGoogle Scholar
  54. 54.
    Bayhan, S., & Alagoz, F. (2014). A markovian approach for best-fit channel selection in cognitive radio networks. Ad Hoc Networks, 12, 165–177.CrossRefGoogle Scholar
  55. 55.
    Li, Y., Dong, Y. N, Hui, Z., Zhao, H. T., Shi, H. X., & Zhao, X.-X. (2010). Spectrum usage prediction based on high order Markov model for cognitive radio networks. In IEEE 10th international conference on computer and information technology (CIT).Google Scholar
  56. 56.
    Min, A. W., & Shin, K. G. (2008). Exploiting multi channel diversity in spectrum agile networks. In INFOCOM.Google Scholar
  57. 57.
    Bayhan, S., & Alagoz, F. (2012). Distributed channel selection in CRAHNs: a non-selfish scheme for mitigating spectrum fragmentation. Ad Hoc Networks, 10, 774–788.CrossRefGoogle Scholar
  58. 58.
    Rehmani, M. H. (2011). Opportunistic data dissemination in ad-hoc cognitive radio networks. PhD thesis, University of Pierre and Marie Curie.Google Scholar
  59. 59.
    Zheng, W., Yong, H. C., & Chau, Y. (2011). On discretizing the exponential on off primary radio activities in simulations. In IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC).Google Scholar
  60. 60.
    Wang, S., Zhang, J., & Tong, L. (2012). A characterization of delay performance of cognitive medium access. IEEE Transaction on Wireless Communications, 11, 800–809.CrossRefGoogle Scholar
  61. 61.
    Lei, J., Enbin, S., Pla, V., & Li, F.Y. (2013). Capacity upper bound of channel assembling in cognitive radio networks with quasistationary primary useractivities. IEEE Transaction on Vehicular Technology, 62, 1849–1855.CrossRefGoogle Scholar
  62. 62.
    Geirhofer, S., Tong, L., & Sadler, B. M. (2007). Cognitive radios for dynamic spectrum access dynamic spectrum access in the time domain. IEEE Communication Magazine, 45, 66–72.CrossRefGoogle Scholar
  63. 63.
    Wang, Z., & Salous, S. (2011). Spectrum occupancy statistics and time series models for cognitive radio. Journal of Signal Processing Systems, 62(2), 145–155.CrossRefGoogle Scholar
  64. 64.
    Shiang, H., & Van Der Schaar, M. (2008). Queuing-based dynamic channel selection for heterogeneous multimedia applications over cognitive radio networks. IEEE Transactions on Multimedia, 10(5), 896–909.CrossRefGoogle Scholar
  65. 65.
    Gambini, J., Simeone, O., Bar-Ness, Y., Spagnolini, U., & Yu, T. (2008). Packet wise vertical handover for unlicensed multi standard spectrum access with cognitiveradios. IEEE Transaction on Wireless Communications, 7, 5172–5176.CrossRefGoogle Scholar
  66. 66.
    Gambini, J., Simeone, O., Spagnolini, U., Bar-Ness, Y., & Kim, Y. (2008). Cognitive radio with secondary packet-by-packet vertical handover. In IEEE international conference on communications (ICC).Google Scholar
  67. 67.
    Li, L., Xu, C., & He, J. (2011). Resource allocation for OFDMA-based cognitive radio systems with primary user activity consideration. In IEEE international conference on communications (ICC).Google Scholar
  68. 68.
    Hu, N., Yao, Y.-D., & Mitola, J. (2012). Most active band (MAB) attack and countermeasures in a cognitive radio network. IEEE Transactions on Wireless Communications, 11(3), 898–902.CrossRefGoogle Scholar
  69. 69.
    Joshi, S., Pawelczak, P., Cabric, D., & Villasenor, J. (2012). When channel bonding is beneficial for opportunistic spectrum access networks. IEEE Transactions on Wireless Communications, 11(11), 3942–3956.CrossRefGoogle Scholar
  70. 70.
    Brah, F., Dayoub, I., & Vandendorpe, L. (2012). Constrained resource allocation for OFDMA cognitive radio networks with primary users activity consideration. In IEEE international symposium on wireless communication systems (ISWCS).Google Scholar
  71. 71.
    Chen, C.-H., & Wang, C.-L. (2010). Power allocation for OFDM-based cognitive radio systems under primary user activity. In IEEE 71st vehicular technology conference (VTC).Google Scholar
  72. 72.
    Sabharwal, A., & Dash, D. (2012). Paranoid secondary: Waterfilling in a cognitive interference channel with partial knowledge. IEEE Transaction on Wireless Communications, 11, 1045–1055.CrossRefGoogle Scholar
  73. 73.
    Lee, W., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.CrossRefGoogle Scholar
  74. 74.
    Saha, B. K., Misra, S., & Obaidat, M. S. (2013). A web-based iintegrated environment for simulation and analysis with NS-2. IEEE Wireless Communications, 20, 109–115.CrossRefGoogle Scholar
  75. 75.
    Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., et al. (2000). Advances in network simulation. IEEE Computer, 33, 59–67.CrossRefGoogle Scholar
  76. 76.
    Heidemann, J., Mills, K., & Kumar, S. (2001). Expanding confidence in network simulations. IEEE Network, 15, 58–63.CrossRefGoogle Scholar
  77. 77.
    Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y., & Elliott, C. (2004). Experimental evaluation of wireless simulation assumptions. In 7th ACM international symposium on modeling, analysis and simulation of wireless and mobile systems MSWiM.Google Scholar
  78. 78.
    Feeney, L. M. (2012). Towards trustworthy simulation of wireless mac/phy layers: A comparison framework. In 15th ACM international conference on modeling, analysis and simulation of wireless and mobile systems MSWiM.Google Scholar
  79. 79.
    Hiranandani, D., Obraczka, K., & Garcia-Lunia-Aceves, J. J. (2013). Manet protocol simulations considered harmful. IEEE Wireless Communications, 20, 82–90.CrossRefGoogle Scholar
  80. 80.
    Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C., & Jetcheva, J. (1998). A performance comparison of multi-hopwireless ad hoc network routing protocols. In IEEE international conference on mobile computing and networking MobiCom.Google Scholar
  81. 81.
    Takai, M., Martin, J. & Bagrodia, R. (2001). Effects of wireless physical layer modeling in mobile ad hoc networks. In 2nd ACM international symposium on mobile ad hoc networking & computing MobiHoc.Google Scholar
  82. 82.
    Kuruvila, J., Stojmenovic, I., & Nayak, A. (2005). Design guidelines for routing protocols in ad hoc and sensor networks with a realistic physical layer. IEEE Communication Magazine, 43, 101–106.Google Scholar
  83. 83.
    Yuan, G., Grammenos, R., Yang, Y., & Wang, W. (2010). Performance analysis of selective opportunistic spectrum access with traffic prediction. IEEE Transactions on Vehicular Technology, 59, 1949–1959.CrossRefGoogle Scholar
  84. 84.
    Kim, H., & Shin, K. (2008) Fast discovery of spectrum opportunities in cognitive radio networks. In IEEE DySPAN.Google Scholar
  85. 85.
    Mehanna, O., Sultan, A., & Gamal, H.E. (2009). Cognitive mac protocols for general primary network models. Technical report, Cornell University.Google Scholar
  86. 86.
    Zahmati, A. S., Fernando, X., & Grami. A., (2010). Steady-state Markov chain analysis for heterogeneous cognitive radio networks. In Sarnoff.Google Scholar
  87. 87.
    Yang, L., Cao, L., & Zheng, H. (2008). Proactive channel access in dynamic spectrum networks. Physical Communications Journal, 1, 103–111.CrossRefGoogle Scholar
  88. 88.
    Adas, A. (1997). Traffic models in broadband networks. IEEE Communications Magazine, 35(7), 82–89.CrossRefGoogle Scholar
  89. 89.
    Vujicic, B., Cackov, N., Vujicic, S., & Trajkovic, L. (2005). Modeling and characterization of traffic in public safety wireless networks. In SPECTS.Google Scholar
  90. 90.
    Kim, H., & Shin, K. (2008). Efficient discovery of spectrum opportunities with mac layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7, 533–545.CrossRefGoogle Scholar
  91. 91.
    Sriram, K., & Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833–846.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyWah CanttPakistan
  2. 2.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyAttockPakistan
  3. 3.Portsmouth Business SchoolPortsmouthUK
  4. 4.University of LeedsLeedsUK

Personalised recommendations