Skip to main content
Log in

A hierarchical approach for resource allocation in hybrid cloud environments

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cloud computing is a key technology for online service providers. However, current online service systems experience performance degradation due to the heterogeneous and time-variant incoming of user requests. To address this kind of diversity, we propose a hierarchical approach for resource management in hybrid clouds, where local private clouds handle routine requests and a powerful third-party public cloud is responsible for the burst of sudden incoming requests. Our goal is to answer (1) from the online service provider’s perspective, how to decide the local private cloud resource allocation, and how to distribute the incoming requests to private and/or public clouds; and (2) from the public cloud provider’s perspective, how to decide the optimal prices for these public cloud resources so as to maximize its profit. We use a Stackelberg game model to capture the complex interactions between users, online service providers and public cloud providers, based on which we analyze the resource allocation in private clouds and pricing strategy in public cloud. Furthermore, we design efficient online algorithms to determine the public cloud provider’s and the online service provider’s optimal decisions. Simulation results validate the effectiveness and efficiency of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The reason why we choose the Gaussian distribution is discussed in Sect. 7.2.

  2. In this paper, we use “utility” and “payoff” interchangeably.

References

  1. How Alibaba catered to USD 3 billion sales in a day. http://www.infoq.com/news/2012/12/interview-taobao-tmall.

  2. de Castro Silva, J. L., Soma, N. Y., & Maculan, N. (2003). A greedy search for the three-dimensional bin packing problem: The packing static stability case. International Transactions in Operational Research, 10(2), 141–153.

    Article  MathSciNet  MATH  Google Scholar 

  3. Panigrahy, R., Talwar, K., Uyeda, L., & Wieder, U. (2011). Heuristics for vector bin packing. Microsoft: Technical Report.

  4. Osborne, M. J. (2004). An introduction to game theory. Oxford: Oxford University Press.

    Google Scholar 

  5. Wu, W., Lui, J. C., & Ma, R. T. (2013). On incentivizing upload capacity in P2P-VoD systems: Design, analysis and evaluation. Computer Networks, 57(7), 1674–1688.

    Article  Google Scholar 

  6. Jünger, M., Liebling, T. M., Naddef, D., et al. (2009). 50 Years of integer programming 1958–2008. NewYork: Springer.

    Google Scholar 

  7. Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations series. The IBM research symposia series (pp. 85–103). Springer.

  8. Fréville, A. (2004). The multidimensional 0–1 knapsack problem: An overview. European Journal of Operational Research, 155(1), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  9. Puchinger, J., Raidl, G. R., & Pferschy, U. (2006). The core concept for the multidimensional knapsack problem. In Evolutionary computation in combinatorial optimization, series. Lecture Notes in Computer Science (vol. 3906, pp. 195–208).

  10. Li, C., Liu, Z., Geng, X., Dong, M., Yang, F., Gan, X., et al. (2014). Two dimension spectrum allocation for cognitive radio networks. IEEE Transactions on Wireless Communications, 13(3), 1410–1423.

    Article  Google Scholar 

  11. Singh, A., Korupolu, M., & Mohapatra, D. (November 2008). Server-storage virtualization: integration and load balancing in data centers. In Proceedings of the ACM/IEEE conference on supercomputing (pp. 1–12).

  12. Jameson, A., Schmidt, W., & Turkel, E. (June 1981). Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In Fluid and plasma dynamics conference (pp. 1–15).

  13. Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordonez, F., & Kraus, S. (2008). Efficient algorithms to solve Bayesian Stackelberg games for security applications. In ACM AAMAS (pp. 895–902).

  14. Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2009). Engineering statistics (5th ed.). Hoboken: Wiley.

    Google Scholar 

  15. Montgomery, D. C., & Runger, G. C. (2010). Applied statistics and probability for engineers (5th ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  16. Whitt, W. (2006). Staffing a calling center with uncertain arrival rate and absenteeism. Production and Operations Management, 15(1), 88–102.

    Google Scholar 

  17. Melvin, M., & Yin, X. (2000). Public information arrival, exchange rate volatility, and quote frequency. The Economic Journal, 110(465), 644–661.

    Article  Google Scholar 

  18. Xiao, Z., Song, W., & Chen, Q. (2013). Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Transactions on Parallel and Distributed Systems, 24(6), 1107–1117.

    Article  Google Scholar 

  19. Alicherry, M., & Lakshman, T. (2012). Network aware resource allocation in distributed clouds. In IEEE INFOCOM (pp. 963–971).

  20. Ergu, D., Kou, G., Peng, Y., Shi, Y., & Shi, Y. (2013). The analytic hierarchy process: Task scheduling and resource allocation in cloud computing environment. The Journal of Supercomputing, 64(3), 835–848.

    Article  Google Scholar 

  21. Dán, G., & Carlsson, N. (2014). Dynamic content allocation for cloud-assisted service of periodic workloads. In IEEE INFOCOM (pp. 853–861).

  22. Hao, F., Kodialam, M., Lakshman, T. V., & Mukherjee, S. (April 2014). Online allocation of virtual machines in a distributed cloud. In IEEE INFOCOM (pp. 10–18).

  23. Shi, W., Zhang, L., Wu, C., Li, Z., & Lau, F. C. (June 2014). An online auction framework for dynamic resource provisioning in cloud computing. In ACM SIGMETRICS (pp. 71–83).

  24. Armbrust, M., Fox, A., Griffith, R., et al. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.

    Article  Google Scholar 

  25. Bittencourt, L. F., Madeira, E. R. M., & da Fonseca, N. L. S. (2012). Scheduling in hybrid clouds. IEEE Communications Magazine, 50(9), 42–47.

    Article  Google Scholar 

  26. Bittencourt, L. F., & Madeira, E. R. M. (2011). HCOC: A cost optimization algorithm for workflow scheduling in hybrid clouds. Journal of Internet Services and Applications, 2(3), 207–227.

    Article  Google Scholar 

  27. Lee, G., Chun, B., & Katz, R. H. (2011). Heterogeneity-aware resource allocation and scheduling in the cloud. In Proceedings of HotCloud (pp. 1–5).

  28. den Bossche, R. V., Vanmechelen, K., & Broeckhove, J. (2010). Cost-optimal scheduling in hybrid IaaS clouds for deadline constrained workloads. In International conference on cloud computing (CLOUD) (pp. 228–235).

  29. Zhou, Z., Zhang, H., Du, X., Li, P., & Yu, X. (2013). Prometheus: Privacy-aware data retrieval on hybrid cloud. In IEEE INFOCOM (pp. 2643–2651).

  30. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 28(5), 755–768.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61271176, 61401334, 61571350 and 61402287, the Fundamental Research Funds for the Central Universities (BDY021403), the 111 Project (B08038) and Shanghai Yangfan Project (No. 14YF1401900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changle Li.

Appendices

Appendix 1: Derive the infimum of \(\mathcal {F}_{j}\left( \mathcal {N}_{j},p_{cj}\right) \)

In Sect. 4, we combine Eqs. (16), (17) and (18), and thus we obtain each dimensional \(\mathcal {F}_{j}\left( \mathcal {N}_{j},p_{cj}\right) \) in Eq. (35). Note that we divide the \(\mathcal {F}_{j}\left( \mathcal {N}_{j},p_{cj}\right) \) into three individual parts, i.e., \(\mathbf {A}\), \(\mathbf {B}\) and \(\mathbf {C}\).

$$\begin{aligned} \mathcal {F}_{j}= & {} \int _{t\in \left[ 0,T\right] }\int _{s_{j}^{t}}\left[ APP_{j}\left( \mathcal {N}_{j},\mathcal {S}_{j}^{t}\right) p_{cj} -\mathcal {N}_{j}p_{lj}\right] \mathcal {G}_j\left( s_{j}^{t}\right) \text {d}s_{j}^{t}\text {d}t\nonumber \\= & {} \int _0^{T}\int _{\sum \limits _{i}k_{imin}}^{\mathcal {N}_{j}}\left( s_{j}^{t}p_{cj}-\mathcal {N}_{j}p_{lj}\right) \mathcal {G}_j\left( s_{j}^{t}\right) \text {d}s_{j}^{t}\text {d}t +\int _0^{T}\int _{\mathcal {N}_{j}}^{\sum \limits _{i}k_{imax}}\left( \mathcal {N}_{j}p_{cj}-\mathcal {N}_{j}p_{lj}\right) \mathcal {G}_j\left( s_{j}^{t}\right) \text {d}s_{j}^{t}\text {d}t\nonumber \\= & {} \int _0^{T}\int _{\sum \limits _{i}k_{imin}}^{\mathcal {N}_{j}}\left[ s_{j}^{t}p_{cj}-\mathcal {N}_{j}p_{lj}\right] \cdot \frac{1}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\text {d}t\nonumber \\&+\int _0^{T}\int _{\mathcal {N}_{j}}^{\sum \limits _{i}k_{imax}}\left[ \mathcal {N}_{j}p_{cj}-\mathcal {N}_{j}p_{lj}\right] \cdot \frac{1}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\text {d}t\nonumber \\= & {} \int _0^{T}\frac{p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\sum \limits _{i}k_{imin}}^{\mathcal {N}_{j}}s_{j}^{t} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\text {d}t\nonumber \\&+\int _0^{T}\frac{\mathcal {N}_{j}p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\mathcal {N}_{j}}^{\sum \limits _{i}k_{imax}} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\text {d}t\nonumber \\&-\int _0^{T}\frac{\mathcal {N}_{j}p_{lj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\sum \limits _{i}k_{imin}}^{\sum \limits _{i}k_{imax}} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\text {d}t\nonumber \\= & {} \int _0^{T}\mathbf {A}\text {d}t+\int _0^{T}\mathbf {B}\text {d}t-\int _0^{T}\mathbf {C}\text {d}t. \end{aligned}$$
(35)

We consider the error function in the probability analysis: \(erf\left( z\right) =\frac{2}{\sqrt{\pi }}\int _{0}^{z}\exp \left( -x^2\right) \text {d}x\). Then \(\mathbf {A}\), \(\mathbf {B}\) and \(\mathbf {C}\) can be computed as Eq. (3638), respectively.

$$\begin{aligned} \mathbf {A}= & {} \frac{p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\sum \limits _{i}k_{imin}}^{\mathcal {N}_{j}}s_{j}^{t} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\= & {} \frac{p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\sum \limits _{i}k_{imin}}^{\mathcal {N}_{j}}\left( s_{j}^{t}-\hat{\mu }_{j}^{t}+\hat{\mu }_{j}^{t}\right) \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\= & {} \frac{p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\sum \limits _{i}k_{imin}}^{\mathcal {N}_{j}}(s_{j}^{t}- \hat{\mu }_{j}^{t})\exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t} +\frac{p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\sum \limits _{i}k_{imin}}^{\mathcal {N}_{j}}\hat{\mu }_{j}^{t}\exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\= & {} \frac{p_{cj}\hat{\sigma }_{j}^{t}}{\sqrt{2\pi }}\exp \left[ {-\left( \mathcal {N}_{j}-\hat{\mu }_{j}^{t}\right) ^2/{2\left( {\hat{\sigma }_{j}^t}\right) ^2}}\right] -\frac{p_{cj}\hat{\sigma }_{j}^{t}}{\sqrt{2\pi }}\exp \left[ {-\left( \sum \limits _{i}k_{imin}-\hat{\mu }_{j}^{t}\right) ^2/{2\left( {\hat{\sigma }_{j}^t}\right) ^2}}\right] \nonumber \\&+\frac{p_{cj}\hat{\mu }_{j}^{t}}{2}erf\left[ \left( \mathcal {N}_{j}-\hat{\mu }_{j}^{t}\right) /{\sqrt{2}\hat{\sigma }_{j}^{t}}\right] -\frac{p_{cj}\hat{\mu }_{j}^{t}}{2}erf\left[ \left( {\sum \limits _{i}k_{imin}-\hat{\mu }_{j}^{t}}\right) /{\sqrt{2}\hat{\sigma }_{j}^{t}}\right] , \end{aligned}$$
(36)
$$\begin{aligned} \mathbf {B}= & {} \frac{\mathcal {N}_{j}p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\mathcal {N}_{j}}^{\sum \limits _{i}k_{imax}} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\= & {} \frac{\mathcal {N}_{j}p_{cj}}{2}\cdot \frac{2}{\sqrt{\pi }}\int _{0}^{\frac{\sum \limits _{i}k_{imax}-\hat{\mu }_{j}^{t}}{\sqrt{2}\hat{\sigma }_{j}^{t}}}\exp \left( -\tau ^2\right) \text {d}\tau -\frac{\mathcal {N}_{j}p_{cj}}{2}\cdot \frac{2}{\sqrt{\pi }}\int _{0}^{\frac{\mathcal {N}_{j}-\hat{\mu }_{j}^{t}}{\sqrt{2}\hat{\sigma }_{j}^{t}}}\exp (-\tau ^2)\text {d}\tau \nonumber \\= & {} \frac{\mathcal {N}_{j}p_{cj}}{2}erf\left[ \left( {\sum \limits _{i}k_{imax}-\hat{\mu }_{j}^{t}}\right) /{\sqrt{2}\hat{\sigma }_{j}^{t}}\right] -\frac{\mathcal {N}_{j}p_{cj}}{2}erf\left[ \left( {\mathcal {N}_{j}-\hat{\mu }_{j}^{t}}\right) /{\sqrt{2}\hat{\sigma }_{j}^{t}}\right] , \end{aligned}$$
(37)

and with the last part

$$\begin{aligned} \mathbf {C}= & {} \frac{\mathcal {N}_{j}p_{lj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\sum \limits _{i}k_{imin}}^{\sum \limits _{i}k_{imax}} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\= & {} \frac{\mathcal {N}_{j}p_{lj}}{2}\cdot \frac{2}{\sqrt{\pi }}\int _{0}^{\frac{\sum \limits _{i}k_{imax}-\hat{\mu }_{j}^{t}}{\sqrt{2}\hat{\sigma }_{j}^{t}}}\exp \left( -\tau ^2\right) \text {d}\tau -\frac{\mathcal {N}_{j}p_{lj}}{2}\cdot \frac{2}{\sqrt{\pi }}\int _{0}^{\frac{\sum \limits _{i}k_{imin}-\hat{\mu }_{j}^{t}}{\sqrt{2}\hat{\sigma }_{j}^{t}}}\exp \left( -\tau ^2\right) \text {d}\tau \nonumber \\= & {} \frac{\mathcal {N}_{j}p_{lj}}{2}erf\left[ \left( {\sum \limits _{i}k_{imax}-\hat{\mu }_{j}^{t}}\right) /{\sqrt{2}\hat{\sigma }_{j}^{t}}\right] -\frac{\mathcal {N}_{j}p_{lj}}{2}erf\left[ \left( {\sum \limits _{i}k_{imin}-\hat{\mu }_{j}^{t}}\right) /{\sqrt{2}\hat{\sigma }_{j}^{t}}\right] . \end{aligned}$$
(38)

Conclude Eq. (36) to (38), we can derive Eq. (35) as

$$\begin{aligned} \mathcal {F}_{j}\left( \mathcal {N}_{j},p_{cj}\right) = \int _{0}^{T}\mathbf {A}+\mathbf {B}-\mathbf {C}\text {d}t \end{aligned}$$
(39)

Due to the generality of problem formulation, it is hard to obtain an accurate formulas to Eq. (35). Instead, combined with Eq. (35) and properties of \(erf\left( z\right) \), we can obtain the lower bound of \(\mathcal {F}_{j}\left( \mathcal {N}_{j},p_{cj}\right) \) as

$$\begin{aligned} \inf \mathcal {F}_{j}\left( \mathcal {N}_{j},p_{cj}\right)= & {} \frac{p_{cj}\hat{\sigma }_{j}^{t}}{\sqrt{2\pi }}\int _{0}^{T}\rho \left( \mathcal {N}_{j},t\right) \text {d}t-\frac{p_{cj}}{2}\int _{0}^{T}\hat{\mu }_{j}^{t}\text {d}t -\frac{p_{cj}+2p_{lj}}{2}\mathcal {N}_{j}T\nonumber \\\leqslant & {} \mathcal {F}_{j}\left( \mathcal {N}_{j},p_{cj}\right) , \end{aligned}$$
(40)

where

$$\begin{aligned} \rho \left( \mathcal {N}_{j},t\right) =\exp \left[ {-\left( \mathcal {N}_{j}-\hat{\mu }_{j}^{t}\right) ^2/{2\left( {\hat{\sigma }_{j}^t}\right) ^2}}\right] -\exp \left[ {-\left( \sum \limits _{i}k_{imin}-\hat{\mu }_{j}^{t}\right) ^2/{2\left( {\hat{\sigma }_{j}^t}\right) ^2}}\right] . \end{aligned}$$
(41)

Note that a natural assumption is \(\sum \limits _{i}k_{imin}\leqslant \hat{\mu }_{j}^{t}\leqslant \sum \limits _{i}k_{imax}\). Up till now, we obtain the infimum of \(\mathcal {F}_{j}\left( \mathcal {N}_{j},p_{cj}\right) \) in Sect. 4.

Appendix 2: Derive the infimum of \(\mathcal {H}_{j}\left( p_{cj}\right) \)

In Sect. 5, we formulate each dimensional \(\mathcal {H}_{j}\left( p_{cj}\right) \) as Eq. (24). Note that the first term equals 0, because the case \(APP_{j}\left( \mathcal {N}_{j},\mathcal {S}_{j}^{t}\right) =\mathcal {S}_{j}^{t}\) implies the OSP does not need to purchase public resources. Thus, we can rewrite Eq. (24) as follows:

$$\begin{aligned} \mathcal {H}_{j}\left( p_{cj}\right)= & {} \int _{0}^{T}\int _{\sum \limits _{i}k_{imin}}^{\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) } \left( s_{j}^{t}-s_{j}^{t}\right) {\mathcal {G}}_j\left( s_{j}^{t}\right) p_{cj}\text {d}s_{j}^{t}\text {d}t\nonumber \\&+\int _{0}^{T}\int _{\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) }^{\sum \limits _{i}k_{imax}}\left[ s_{j}^{t}-\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) \right] {\mathcal {G}}_j\left( s_{j}^{t}\right) p_{cj}\text {d}s_{j}^{t}\text {d}t\nonumber \\= & {}\,0+\int _{0}^{T}\mathbf {D}\text {d}t. \end{aligned}$$
(42)

Now we compute the term \(\mathbf {D}\) as Eq. (43).

$$\begin{aligned} \mathbf {D}= & {} \int _{\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) }^{\sum \limits _{i}k_{imax}}\left[ s_{j}^{t}-\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) \right] {\mathcal {G}}_j\left( s_{j}^{t}\right) p_{cj}\text {d}s_{j}^{t}\nonumber \\= & {} \frac{p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) }^{\sum \limits _{i}k_{imax}}\left[ s_{j}^{t}-\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) \right] \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\= & {} \frac{p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) }^{\sum \limits _{i}k_{imax}}\left[ s_{j}^{t}-\hat{\mu }_{j}^{t}\right] \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\&+\frac{p_{cj}}{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) }^{\sum \limits _{i}k_{imax}}\left[ \hat{\mu }_{j}^{t}-\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) \right] \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\= & {} \frac{p_{cj}\hat{\sigma }_{j}^{t}}{\sqrt{2\pi }}\int _{-\frac{\left( \hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) -\hat{\mu }_{j}^{t}\right) ^2}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}} ^{-\frac{\left( \sum \limits _{i}k_{imax}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}}\exp \left( \tau \right) \text {d}\tau +\frac{p_{cj}\left[ \hat{\mu }_{j}^{t}-\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) \right] }{\sqrt{2\pi }\hat{\sigma }_{j}^{t}}\int _{\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) }^{\sum \limits _{i}k_{imax}} \exp \left[ -\frac{\left( s_{j}^{t}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \text {d}s_{j}^{t}\nonumber \\= & {} \frac{p_{cj}\hat{\sigma }_{j}^{t}}{\sqrt{2\pi }}\exp \left[ -\frac{\left( \sum \limits _{i}k_{imax}-\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] -\frac{p_{cj}\hat{\sigma }_{j}^{t}}{\sqrt{2\pi }}\exp \left[ -\frac{\left( \hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) -\hat{\mu }_{j}^{t}\right) ^{2}}{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] \nonumber \\&+\frac{p_{cj}\left[ \hat{\mu }_{j}^{t}-\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) \right] }{2} erf\left( \frac{\sum \limits _{i}k_{imax}-\hat{\mu }_{j}^{t}}{\sqrt{2}\hat{\sigma }_{j}^{t}}\right) -\frac{p_{cj}\left[ \hat{\mu }_{j}^{t}-\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) \right] }{2}erf\left( \frac{\hat{\mathcal {N}}_{j}^{*}-\hat{\mu }_{j}^{t}}{\sqrt{2}\hat{\sigma }_{j}^{t}}\right) . \end{aligned}$$
(43)

Similar to the previous derivations in Appendix 1, we can have

$$\begin{aligned} \inf \mathcal {H}_{j}\left( p_{cj}\right)= & {} \frac{p_{cj}}{\sqrt{2\pi }}\int _{0}^{T}{\hat{\sigma }_{j}^t}\omega \left( p_{cj},t\right) \text {d}t +\frac{p_{cj}}{2}\int _{0}^{T}\hat{\mu }_{j}^t\text {d}t-\frac{1}{2}\hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) p_{cj}T\nonumber \\\leqslant & {} \mathcal {H}_{j}\left( p_{cj}\right) , \end{aligned}$$
(44)

where

$$\begin{aligned} \omega \left( p_{cj},t\right) =\exp \left[ -\left( \sum \limits _{i}k_{imax}-\hat{\mu }_{j}^{t}\right) ^{2}/{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] - \exp \left[ -\left( \hat{\mathcal {N}}_{j}^{*}\left( p_{cj}\right) -\hat{\mu }_{j}^{t}\right) ^{2}/{2\left( {\hat{\sigma }_{j}^t}\right) ^2}\right] . \end{aligned}$$
(45)

Up till now, we obtain the infimum of \(\mathcal {H}_{j}\left( p_{cj}\right) \) in Sect. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, C., Wu, W. et al. A hierarchical approach for resource allocation in hybrid cloud environments. Wireless Netw 24, 1491–1508 (2018). https://doi.org/10.1007/s11276-016-1416-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1416-7

Keywords

Navigation