Advertisement

Wireless Networks

, Volume 24, Issue 5, pp 1561–1574 | Cite as

Efficient scalable video multicast based on network-coded communication

Article

Abstract

In order to increase the efficiency of mobile video transmission in a 5G network, this paper investigates a cooperative multicast of scalable video using network coding with adaptive modulation and coding over dedicated relay-based cellular networks. Different scalable video layers prefer different protection degrees, and user equipments (UEs) in different locations experience different packet loss rates in wireless networks. Guaranteeing that all UEs experience a certain level of video quality is one of the biggest challenges in scalable video multicast. Using the number of satisfied UEs as a metric, the proposed efficient scalable video multicast based on network-coded cooperation (SVM-NC) scheme, combined with adaptive modulation and coding, enhances the attainable system performance under strict time and bandwidth resource constraints for guaranteed smooth playback. Various simulations were performed for performance evaluation. The proposed scheme ensures that the expected percentage of satisfied UEs approximately achieves the maximum number of UEs in a multicast group by using network-coded cooperation over dedicated relay-based cellular networks. In addition, the peak signal-to-noise ratio metric is asymptotic to the maximum performance of high-resolution video quality offered by service providers.

Keywords

Network coding Scalable video multicast Relay-assisted cellular networks 

Notes

Acknowledgements

This work was supported by Institute for Information & communications Technology Promotion (IITP) Grant funded by the Korea government (MSIP) (No. B0101-16-0033, Research and Development of 5G Mobile Communications Technologies using CCN-based Multi-dimensional Scalability).

References

  1. 1.
    3GPP TS 26.346 V6.6.0. (2006). Technical Specification Group Services and System Aspects; Multimedia Broadcast/Multicast Service (MBMS); Protocols and Codecs. Technical Report.Google Scholar
  2. 2.
    3GPP TS 22.146 V9.0.0. (2009). Technical Specification Group Services and System Aspects; Multimedia Broadcast/Multicast Service; Stage 1 (Release 9). Technical Report.Google Scholar
  3. 3.
    Chuah, S. P., Chen, Z., & Tan, Y. P. (2012). Energy-efficient resource allocation and scheduling for multicast of scalable video over wireless networks. IEEE Transactions on Multimedia, 14(4), 1324–1336.CrossRefGoogle Scholar
  4. 4.
    Li, P., Zhang, H., Zhao, B., & Rangarajan, S. (2012). Scalable video multicast with adaptive modulation and coding in broadband wireless data systems. IEEE Transactions on Networking, 20(1), 57–68.CrossRefGoogle Scholar
  5. 5.
    Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.CrossRefGoogle Scholar
  6. 6.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversitypart 1: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRefGoogle Scholar
  7. 7.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Vehicular Technology, 50(12), 3062–3080.MathSciNetMATHGoogle Scholar
  8. 8.
    Alay, O., Korakis, T., Wang, Y., Erkip, E., & Panwar, S. (2010). Layered wireless video multicast using relays. IEEE Transactions on Circuits and Systems for Video Technology, 20(8), 1095–1109.CrossRefGoogle Scholar
  9. 9.
    Alay, O., Liu, P., Wang, Y., & Erkip, E. (2011). Cooperative layered video multicast using randomized distributed space time codes. IEEE Transactions on Multimedia, 13(5), 1127–1140.CrossRefGoogle Scholar
  10. 10.
    Niu, B., Jiang, H., & Zhao, H. V. (2010). A cooperative multicast strategy in wireless networks. IEEE Transactions on Vehicular Technology, 59(6), 3136–3143.CrossRefGoogle Scholar
  11. 11.
    Kuo, C. H., Wang, C. M., & Lin, J. L. (2011). Cooperative wireless broadcast for scalable video coding. IEEE Transactions on Circuits and Systems for Video Technology, 21(6), 816–824.CrossRefGoogle Scholar
  12. 12.
    Wang, S. C., & Liao, W. (2013). Cooperative multicasting for wireless scalable video transmissions. IEEE Transactions on Communications, 61(9), 3980–3989.CrossRefGoogle Scholar
  13. 13.
    Ahlswede, R., Cai, N., Li, S. Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ho, T., Meldard, M., Koetter, R., Karger, D. R., Effros, M., Shi, J., et al. (2006). A random linear network coding approach to multicast. IEEE Transactions on Information Theory, 52(10), 4313–4430.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chou, P. A., & Wu, Y. (2007). Network coding for the internet and wireless networks. IEEE Transactions on Signal Processing, 24(5), 77–85.CrossRefGoogle Scholar
  16. 16.
    Bao, X., & Li, J. (2008). Adaptive network coded cooperation (ANCC) For wireless relay networks: Matching code-on-graph with network-on-graph. IEEE Transactions on Wireless Communications, 7(2), 574–583.CrossRefGoogle Scholar
  17. 17.
    Yang, D. N., & Chen, M. S. (2009). Data broadcast with adaptive network coding in heterogeneous wireless networks. IEEE Transsctions on Mobile Computing, 8(1), 109–125.CrossRefGoogle Scholar
  18. 18.
    Sharma, S., Shi, Y., Liu, J., Hou, Y. T., Kompella, S., & Midkiff, S. F. (2012). Network coding in cooperative communications: Friend or foe? IEEE Transactions on Mobile Computing, 11(7), 1073–1085.CrossRefGoogle Scholar
  19. 19.
    Li, P., & Guo, S. (2013). On the multicast capacity in energy—Constrained lossy wireless networks by exploiting intra-batch and inter-batch network coding. IEEE Transactions on Parallel and Distributed Systems, 24(11), 2251–2260.CrossRefGoogle Scholar
  20. 20.
    Zhang, Q., Heide, J., Pedersenand, M. V., & Fitzek, F. H. P. (2011). MBMS with user cooperation and network coding. IEEE Global Telecommunications Conference.Google Scholar
  21. 21.
    Jin, J., Li, B. (2009). Cooperative multicast scheduling with random network coding in WiMAX. In IEEE International Workshop on Quality of Service.Google Scholar
  22. 22.
    Lin, K. C. J., Lee, S. T. (2011). Relay-based video multicast with network coding in multi-rate wireless networks. IEEE Global Telecommunications Conference.Google Scholar
  23. 23.
    Keller, L., Le, A., & Cici, B.(2012). Microcast: Cooperative video streaming on smart phones. In Proceedings of ACM Mobile Systems (pp. 57–70).Google Scholar
  24. 24.
    Yang, Z., Li, M., & Lou, W. (2012). CodePlay: Live multimedia streaming in VANETs using symbol-level network coding. IEEE Transactions on Wireless Communications, 11(8), 3006–3013.Google Scholar
  25. 25.
    Tassi, A., Khirallah, C., Vukobratovic, D., Chiti, F., Thompson, J. S., & Fantacci, R. (2015). Resource allocation strategies for network-coded video broadcasting services over LTE-advanced. IEEE Transactions on Vehicular Technology, 64(5), 2186–2192.CrossRefGoogle Scholar
  26. 26.
    Tassi, A., Chatzigeorgiou, I., & Vukobratovic, D. (2015). Resource allocation frameworks for network-coded layered multimedia multicast services. IEEE Journal on Selected Areas in Communications, 32(2), 141–155.CrossRefGoogle Scholar
  27. 27.
    Alay, O., Korakis, T., Wang, Y., & Panwar, S. (2010). Dynamic rate and FEC adaptation for video multicast in multi-rate wireless networks. Mobile Networks and Applications, 15(3), 425–434.CrossRefGoogle Scholar
  28. 28.
    Baek, S. Y., Hong, Y. J., & Sung, D. K. (2009). Adaptive transmission scheme for mixed multicast and unicast traffic in cellular systems. IEEE Transactions on Vehicular Technology, 58(6), 2899–2908.CrossRefGoogle Scholar
  29. 29.
    Hwang, D., Chau, P., Shin, J., & Lee, T. J. (2015). Two cooperative multicast schemes of scalable video in relay-based cellular networks. IET Communications, 9(7), 982–989.CrossRefGoogle Scholar
  30. 30.
    Khamfroush, H., Lucani, D. E., Pahlevani, P., & Barros, J. (2015). On optimal policies for network-coded cooperation: Theory and implementation. IEEE Journal on Selected Areas in Communications, 33(2), 199–212.CrossRefGoogle Scholar
  31. 31.
    Liu, Q., Zhou, S., & Giannakis, G. B. (2004). Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications, 3(5), 1746–1755.CrossRefGoogle Scholar
  32. 32.
    Taghouti, M., Lucani, D. E., Pedersen, M. V., & Bouallegue, A. (2016). On the impact of zero-padding in network coding efficiency with internet traffic and video traces. IEEE 22th European Wireless Conference.Google Scholar
  33. 33.
    Zarrinkoub, H. (2014). Understanding LTE with MATLAB® from mathematical modeling to simulation and prototyping. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  34. 34.
    Sesia, S., Toufik, I., & Baker, M. (2011). LTE—The UMTS long term evolution: From theory to practice. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  35. 35.
    Lucani, D., Médard, M., & Stojanovic, M. (2009). Random linear network coding for time-division duplexing: Field size considerations. IEEE Global Telecommunications Conference.Google Scholar
  36. 36.
    Li, Y., Soljanin, E., & Spasojevic, P. (2011). Effects of the generation size and overlap on throughput and complexity in randomized linear network coding. IEEE Transactions on Information Theory, 57(2), 1111–1123.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Aboutorab, N., Sadeghi, P., & Tajbakhsh, S. E. (2013). Instantly decodable network coding for delay reduction in cooperative data exchange systems. IEEE International Symposium on Information Theory.Google Scholar
  38. 38.
    Huo, Y., Cornelius, C., Wiegand, T., & Hanzo, L. (2015). A tutorial and review on inter-layerd FEC coded layered video streaming. IEEE Communications Surveys and Tutorials, 17(2), 1166–1207.CrossRefGoogle Scholar
  39. 39.
    Peng, M., Yang, C., Zhao, Z., & Wang, W. (2012). Cooperative network coding in relay-based IMT-advanced systems. IEEE Communications Magazine, 50(4), 76–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Electronic and Electrical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Department of Interaction ScienceSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations