Advertisement

Wireless Networks

, Volume 24, Issue 5, pp 1419–1437 | Cite as

Range extension cooperative MAC to attack energy hole in duty-cycled multi-hop WSNs

Article
  • 120 Downloads

Abstract

Effective techniques for extending lifetime in multi-hop wireless sensor networks include duty cycling and, more recently introduced, cooperative transmission (CT) range extension. However, a scalable MAC protocol has not been presented that combines both. An On-demand Scheduling Cooperative MAC protocol (OSC-MAC) is proposed to address the energy hole problem in multi-hop wireless sensor networks (WSNs). By combining an on-demand strategy and sensor cooperation intended to extend range, OSC-MAC tackles the spatio-temporal challenges for performing CT in multi-hop WSNs: cooperating nodes are neither on the same duty cycle nor are they necessarily in the same collision domain. We use orthogonal and pipelined duty-cycle scheduling, in part to reduce traffic contention, and devise a reservation-based wake-up scheme to bring cooperating nodes into temporary synchrony to support CT range extension. The efficacy of OSC-MAC is demonstrated using extensive NS-2 simulations for different network scenarios without and with mobility. Compared with existing MAC protocols, simulation results show that while we explicitly account for the overhead of CT and practical failures of control packets in dense traffic, OSC-MAC still gives 80–200 % lifetime improvement.

Keywords

Energy hole Range extension Duty cycle Wireless sensor networks 

Notes

Acknowledgements

The authors gratefully acknowledge support for this research from the US National Science Foundation under Grant CNS-1017984.

References

  1. 1.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRefGoogle Scholar
  2. 2.
    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.CrossRefGoogle Scholar
  3. 3.
    Anastasi, G., Falchi, A., Passarella, A., Conti, M., & Gregori, E. (2004). Performance measurements of motes sensor networks. In Proceedings of the 7th ACM international symposium on modeling, analysis and simulation of wireless and mobile systems, ACM (pp. 174–181) New York, USA, MSWiM.Google Scholar
  4. 4.
    B200mini. (2016). USRP-B200mini. Ettus http://www.ettus.com/product/details/USRP-B200mini.
  5. 5.
    Badia, L., Levorato, M., Librino, F., & Zorzi, M. (2010). Cooperation techniques for wireless systems from a networking perspective. IEEE Wireless Communications, 17(2), 89–96.CrossRefGoogle Scholar
  6. 6.
    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRefGoogle Scholar
  7. 7.
    Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In Proceedings of sensor systems, ACM, New York, USA.Google Scholar
  8. 8.
    Chakrabarti, A., Sabharwal, A., & Aazhang, B. (2003). Using predictable observer mobility for power efficient design of sensor networks. In Proceedings of the 2nd international conference on information processing in sensor networks, IPSN’03 (pp 129–145). Springer.Google Scholar
  9. 9.
    Chang, Y. J., Jung, H., & Ingram, M. A. (2010). Demonstration of a new degree of freedom in wireless routing: Concurrent cooperative transmission. In Proceedings of ACM workshop on hot topics in embedded networked sensors.Google Scholar
  10. 10.
    Dai, H., & Han, R. (2003). A node-centric load balancing algorithm for wireless sensor networks. IEEE GLOBECOM IEEE, 1, 548–552.Google Scholar
  11. 11.
    Fei, T., Wan, T., Rong, X., Lei, S., & Young-Chon, K. (2011). P-MAC: A cross-layer duty cycle MAC protocol towards pipelining for wireless sensor networks. IEEE ICC, 2011, 1–5.Google Scholar
  12. 12.
    Goh, H., Sim, M., & Ewe, H. (2006). Energy efficient routing for wireless sensor networks with grid topology. Embedded and ubiquitous computing (Vol. 4096, pp. 834–843). Berlin, Heidelberg: Springer.Google Scholar
  13. 13.
    Gokturk, M., Gurbuz, O., & Erkip, E. (2012). Recomac: A cross-layer cooperative network protocol for wireless ad hoc networks. In 5th international conference on new technologies, mobility and security (NTMS) (pp 1–7).Google Scholar
  14. 14.
    Guntupalli, L., Lin, J., Weitnauer, M., & Li, F. (2014). ACT-MAC: An asynchronous cooperative transmission mac protocol for WSNs. In IEEE international conference on communications Workshops (ICC) (pp. 848–853).Google Scholar
  15. 15.
    Haykin, S., & Moher, M. (2004). Modern Wireless Communication. Upper Saddle River, NJ: Prentice-Hall Inc.Google Scholar
  16. 16.
    Hongzhi, J., Ingram, M., & Li, F. (2011). A cooperative lifetime extension MAC protocol in duty cycle enabled wireless sensor networks. In MILCOM (pp. 896 –901).Google Scholar
  17. 17.
    Jakllari, G., Krishnamurthy, S., Faloutsos, M., Krishnamurthy, P., & Ercetin, O. (2007). A cross-layer framework for exploiting virtual miso links in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(6), 579–594.CrossRefGoogle Scholar
  18. 18.
    Jin Woo, J., & Ingram, M. A. (2010). Residual-energy-activated cooperative transmission (REACT) to avoid the energy hole. In Proceedings of IEEE international conference on communications workshops (ICC).Google Scholar
  19. 19.
    Jung, J. W., & Weitnauer, M. A. (2013). On using cooperative routing for lifetime optimization of multi-hop wireless sensor networks: Analysis and guidelines. IEEE Transactions on Communications, 61(99), 1–11.Google Scholar
  20. 20.
    Kansal, A., Somasundara, A. A., Jea, D. D., Srivastava, M. B. & Estrin, D. (2004). Intelligent fluid infrastructure for embedded networks. In Proceedings of the 2nd international conference on mobile systems, applications, and services, ACM, MobiSys ’04 (pp. 111–124).Google Scholar
  21. 21.
    Kar, K., Kodialam, M., Lakshman, T., & Tassiulas, L. (2003). Routing for network capacity maximization in energy-constrained ad-hoc networks. In Proceedings of IEEE INFOCOM.Google Scholar
  22. 22.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Li, J., & Mohapatra, P. (2005). An analytical model for the energy hole problem in many-to-one sensor networks. In Proceedings of IEEE VTC Google Scholar
  24. 24.
    Lian, J., Chen, L., Naik, K., Otzu, T., & Agnew, G. (2004). Modeling and enhancing the data capacity of wireless sensor networks. IEEE Monograph on Sensor Network Operations, 2, 91–138.Google Scholar
  25. 25.
    Lian, J., Naik, K., & Agnew, G. B. (2006). Data capacity improvement of wireless sensor networks using non-uniform sensor distribution. International Journal of Distributed Sensor Networks, 2(2), 121–145.CrossRefGoogle Scholar
  26. 26.
    Lin, J., & Ingram, M. A. (2012). SCT-MAC: A scheduling duty cycle MAC protocol for cooperative wireless sensor networks. In IEEE international conference on Communication(ICC).Google Scholar
  27. 27.
    Lin, J., & Ingram, M. A. (2013). OSC-MAC: Duty cycle scheduling and cooperation in multi-hop wireless sensor networks. In Proceedings of IEEE wireless communications and networking (WCNC).Google Scholar
  28. 28.
    Lin, J., Jung, H., Chang, Y. J., Jung, J. W., & Weitnauer, M. A. (2015). On cooperative transmission range extension in multi-hop wireless ad-hoc and sensor networks: A review. Ad Hoc Networks, 29, 117–134.CrossRefGoogle Scholar
  29. 29.
    Lin, Q., & Weitnauer, M. A. (2015a). Diversity in synchronization for scheduled OFDM time-division cooperative transmission. In IEEE military communications conference (MILCOM).Google Scholar
  30. 30.
    Lin, Q., & Weitnauer, M. A. (2015b). SINR analysis and energy allocation of preamble and training for time division CT with range extension. In IEEE military communications conference (MILCOM).Google Scholar
  31. 31.
    Lin, J., & Weitnauer, M. A. (2016). Modeling of multihop wireless sensor networks with mac, queuing, and cooperation. International Journal of Distributed Sensor Networks2016. Article ID: 5258742. doi: 10.1155/2016/5258742.
  32. 32.
    Liu, A. F., Wu, X. Y., & Gui, W. H. (2008). Research on energy hole problem for wireless sensor networks based on alternation between dormancy and work. In The 9th international conference for Young Computer Scientists (pp. 475–480).Google Scholar
  33. 33.
    Luo, J., & Hubaux, J. P. (2005). Joint mobility and routing for lifetime elongation in wireless sensor networks. In Proceedings IEEE 24th IEEE INFOCOM (Vol. 3, pp. 1735–1746).Google Scholar
  34. 34.
    Luo, J., Blum, R., Cimini, L., Greenstein, L., & Haimovich, A. (2007). Decode-and-forward cooperative diversity with power allocation in wireless networks. IEEE Transactions on Wireless Communications, 6(3), 793–799.CrossRefGoogle Scholar
  35. 35.
    Luo, J., Panchard, J., Pirkowski, M., Grossglauser, M., & Hubaux, J. P. (2006). Mobiroute: Routing towards a mobile sink for improving lifetime in sensor networks. In Distributed computing in sensor systems (Vol. 4026) Berlin, Heidelberg: Springer.Google Scholar
  36. 36.
    Pei, L., Zhifeng, T., Sathya, N., Thanasis, K., & Shivendra, S. P. (2007). CoopMAC: A cooperative MAC for wireless LANs. IEEE JSAC, 25(2), 340–354.Google Scholar
  37. 37.
    Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In The second ACM conference on embedded networked sensor systems (SenSys).Google Scholar
  38. 38.
    Rappaport, T. (2001). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice Hall PTR.MATHGoogle Scholar
  39. 39.
    Saad, L. B., & Tourancheau, B. (2011). Sinks mobility strategy in ipv6-based WSNs for network lifetime improvement. In 2011 4th IFIP international conference on new technologies, mobility and security (NTMS) (pp. 1–5).Google Scholar
  40. 40.
    Salhieh, A., Weinmann, J., Kochhal, M., & Schwiebert, L. (2001). Power efficient topologies for wireless sensor networks. In International conference on parallel processing (Vol. 2001, pp. 156–163).Google Scholar
  41. 41.
    Sangman, M., & Chansu, Y. (2011). A cooperative diversity-based robust MAC protocol in wireless ad hoc networks. IEEE Transactions on Parallel and Distributions Systems, 22, 353–363.CrossRefGoogle Scholar
  42. 42.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRefGoogle Scholar
  43. 43.
    Stoleru, R., & Stankovic, J. (2004). Probability grid: A location estimation scheme for wireless sensor networks. In IEEE SECON.Google Scholar
  44. 44.
    Sun, Y., Du, S., Gurewitz, O., & Johnson, D. B. (2008). DW-MAC: A low latency, energy efficient demand-wakeup MAC protocol for wireless sensor networks. In Proceedings of MobiHoc 2008, ACM.Google Scholar
  45. 45.
    Sun, Y., Gurewitz, O., & Johnson, D. B. (2008). RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In SenSys, ACM.Google Scholar
  46. 46.
    Talarico, S., Matthew, C. V., & Thomas, R. H. (2014). Unicast barrage relay networks: Outage analysis and optimization. In Proceedings of IEEE MILCOM (pp. 537–543).Google Scholar
  47. 47.
    Wang, ZM., Basagni, S., Melachrinoudis, E., & Petrioli, C. (2005). Exploiting sink mobility for maximizing sensor networks lifetime. In Proceedings of the 38th annual Hawaii international conference on system sciences, HICSS (Vol. 09).Google Scholar
  48. 48.
    Wang, W., Srinivasan, V., & Chua, K. C. (2005). Using mobile relays to prolong the lifetime of wireless sensor networks. In Proceedings of the 11th annual international conference on mobile computing and networking, ACM (pp. 270–283).Google Scholar
  49. 49.
    Wei, Y., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedigs of IEEE INFOCOM.Google Scholar
  50. 50.
    Winter, T. (2012). RPL: IPv6 routing protocol for low power and lossy networks. In rfc6550.Google Scholar
  51. 51.
    Wu, X., Chen, G., & Das, S. K. (2008). Avoiding energy holes in wireless sensor networks with nonuniform node distribution. IEEE Transactions on Parallel and Distributed Systems, 19, 710–720.CrossRefGoogle Scholar
  52. 52.
    Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling. In Proceedings of the 4th international conference on Embedded networked sensor systems, ACM (pp. 321–334).Google Scholar
  53. 53.
    Yong, Z., Ju, L., Lina, Z., Chao, Z., & He, C. (2011). Link-utility-based cooperative MAC protocol for wireless multi-hop networks. IEEE Transactions on Wireless Communications, 10(3), 995–1005.CrossRefGoogle Scholar
  54. 54.
    Zhao, B., & Valenti, M. (2005). Practical relay networks: A generalization of hybrid-ARQ. IEEE Journal on Selected Areas in Communications, 23(1), 7–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.IBM SecurityAtlantaGeorgia
  2. 2.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgia

Personalised recommendations