Wireless Networks

, Volume 24, Issue 4, pp 1297–1311 | Cite as

A performance study for the multicast collision prevention mechanism for IEEE 802.11

  • M. Ángeles Santos
  • José Villalón
  • Luis Orozco-Barbosa
  • Fernando Ramírez Mireles


In IEEE 802.11 networks a data packet is delivered simultaneously to multiple receivers through the multicast paradigm. The standard defines a simple mechanism that does not implement any error-recovery mechanism, thus, the reliability of the service provided to the multicast users is penalized. This issue is more important as the number of collisions increases due to a large number of active stations and/or a high load network. In this paper we carry out a detailed optimization study of the multicast collision prevention (MCP) mechanism, a highly-efficient multicast collision avoidance mechanism for IEEE 802.11 previously introduced by the authors. Besides a more in deep explanation of MCP, this study includes a comparative performance evaluation of the optimized MCP with the IEEE 802.11 standard. Results shown that, through this optimization, the number of collisions in MCP can be made negligible for any network load.


Collision prevention Multicast WLAN 802.11 



This work was supported by the Spanish MICINN, Plan E funds, as well as European Commission FEDER funds, under Grant TIN2015-66972-C5-2-R.


  1. 1.
    LAN MAN Standards Committee of the IEEE Computer Society. (2007). IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications.Google Scholar
  2. 2.
    Kuri, J., & Kasera, S. K. (2001). Reliable multicast in multi-access wireless LANs. ACM Wireless Networks, 7(4), 359–369.CrossRefzbMATHGoogle Scholar
  3. 3.
    Li, Z., & Herfet, T. (2008). BLBP: A beacon-driven leader based protocol for MAC layer multicast error control in wireless LANs. 4th WiCOM, Dalian, China.Google Scholar
  4. 4.
    Lyakhov, A., Vishnevsky, V., & Yakimov, M. (2007). Multicast QoS support in IEEE 802.11 WLANs. In IEEE international conference on mobile adhoc and sensor systems conference (pp. 1–3).Google Scholar
  5. 5.
    Gupta, S. K. S., Shankar, V., & Lalwani, S. (2003). Reliable multicast MAC protocol for wireless LANs. In IEEE international conference in communications.Google Scholar
  6. 6.
    Srinivas, V., & Ruan, L. (2009). An efficient reliable multicast protocol for 802.11-based wireless LANs. In Proceedings of IEEE WoWMoM’09.Google Scholar
  7. 7.
    Wang, X., Wang, L., Wang, Y., & Gu, D. (2008). Reliable multicast mechanism in WLAN with extended implicit MAC acknowledgment. In IEEE vehicular technology conference (pp. 2695–2699).Google Scholar
  8. 8.
    Majumda, A., Sachs, D. G., Kozintsev, I. V., Ramchandran, K., & Yeung, M. M. (2002). Multicast and unicast real-time video streaming over wireless LANs. IEEE Transactions on Circuits and Systems for Video Technology, 12(6), 524–534. doi: 10.1109/TCSVT.2002.800315.CrossRefGoogle Scholar
  9. 9.
    Puri, R., Lee, K. W., Ramchandran, K., & Bharghavan, V. (2001). An integrated source transcoding and congestion control paradigm for video streaming in the internet. IEEE Transactions on Multimedia, 3(1), 18–32.CrossRefGoogle Scholar
  10. 10.
    Zhao, L., & Herfet, T. (2009). MAC layer multicast error control for IPTV in wireless LANs. IEEE Transactions on Broadcasting, 55(2), 353–362. doi: 10.1109/TBC.2009.2016502.CrossRefGoogle Scholar
  11. 11.
    Wu, M., & Radha, H. (2010). Distributed network embedded FEC for real-time multicast applications in multi-hop wireless networks. Wireless Networks, 16(5), 1447–1458. doi: 10.1007/s11276-009-0213-y.CrossRefGoogle Scholar
  12. 12.
    Greebla, G., & Katzir, L. (2010). Cross-layer hybrid FEC/ARQ reliable multicast with adaptive modulation and coding in broadband wireless networks. IEEE/ACM Transaction on Networking, 18(6), 1908–1920.CrossRefGoogle Scholar
  13. 13.
    LAN MAN Standards Committee of the IEEE Computer Society, ANSI/IEEE Std 802.11aa (2012). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 2: MAC Enhancements for Robust Audio Video Streaming.Google Scholar
  14. 14.
    Santos, M. A., Villalon, J., Ramirez-Mireles, F., Orozco-Barbosa, L., & Delicado, J. (2011). A novel multicast collision prevention mechanism for IEEE 802.11. IEEE Communications Letters, 15(11), 1190–1192. doi: 10.1109/LCOMM.2011.11.111408.CrossRefGoogle Scholar
  15. 15.
    Cai, L. X., Shen, X., Mark, J. W., & Yang Xiao, L. C. (2006). Voice capacity analysis of WLAN with unbalanced traffic. IEEE Transactions on Vehicular Technology, 55(3), 752–761.CrossRefGoogle Scholar
  16. 16.
    Opnet. Technologies. Inc. OPNET Modeler 11.5 (c)1987–2006.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Ángeles Santos
    • 1
  • José Villalón
    • 1
  • Luis Orozco-Barbosa
    • 1
  • Fernando Ramírez Mireles
    • 2
  1. 1.Instituto de Investigación en Informática de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Engineering DivisionITAMMexico CityMexico

Personalised recommendations