Skip to main content

Advertisement

Log in

Maximizing multicast lifetime in unreliable wireless ad hoc network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Multicast is an efficient method for transmitting the same packets to a group of destinations. In energy-constrained wireless ad hoc networks where nodes are powered by batteries, one of the challenging issues is how to prolong the multicast lifetime. Most of existing work mainly focuses on multicast lifetime maximization problem in wireless packet loss-free networks. However, this may not be the case in reality. In this paper, we are concerned with the multicast lifetime maximization problem in unreliable wireless ad hoc networks. To solve this problem, we first define the multicast lifetime as the number of packets transmitted along the multicast tree successfully. Then we develop a novel lifetime maximization genetic algorithm to construct the multicast tree consisting of high reliability links subject to the source and destination nodes. Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guo, S., & Yang, O. W. W. (2007). Energy-aware multicasting in wireless ad hoc networks: A survey and discussion. Computer Communications, 30(9), 2129–2148.

    Article  MathSciNet  Google Scholar 

  2. Ali, H., Shahzad, W., & Khan, F. A. (2012). Energy-efficient clustering in mobile ad-hoc networks using multi-objective particle swarm optimization. Applied Soft Computing, 12(7), 1913–1928.

    Article  Google Scholar 

  3. Vergados, D. J., Pntazis, N. A., & Vergados, D. D. (2008). Energy-efficient route selsection strategies for wireless sensor networks. Mobile Networks and Applications, 13(3–4), 285–296.

    Google Scholar 

  4. Dietrich, I., & Dressler, F. (2009). On the lifetime of wireless sensor networks. ACM Transactions on Sensor Networks. doi:10.1145/1464420.1464425.

  5. Karthikeyan, P., Baskar, S., & Alphones, A. (2013). Improved genetic algorithm using different genetic operator combinations (GOCs) for multicast routing in ad hoc networks. Soft Computing, 17(9), 1563–1572.

    Article  Google Scholar 

  6. Acharya, T., & Paul, G. (2013). Maximum lifetime broadcast communication in cooperative multihop wireless ad hoc networks: Centralized and distributed approachs. Ad Hoc Networks, 11(6), 1667–1682.

    Article  Google Scholar 

  7. Hao, J., Duan, G., Zhang, B., & Li, C. (2013). An energy-efficient on-demand multicast routing protocol for wireless ad hoc and sensor networks. In Proceedings of 2013 GLOBECOM (pp. 4650–4655).

  8. Lu, T., & Zhu, J. (2013). Genetic algorithm for energy-efficient QoS multicast routing. IEEE Communications Letters, 7(1), 31–34.

    Article  MathSciNet  Google Scholar 

  9. Yakine, F., & Idrissi, A. (2014). Energy efficient routing with network lifetime in wireless ad-hoc networks. In Proceedings of 2014 fifth international conference on NGNS (pp. 282–288).

  10. Kang, I., & Poovendran, R. (2003). Maximizing static network lifetime of wireless broadcast ad hoc networks. In Proceedings of 2003 IEEE international conference on ICC (pp. 2256–2261).

  11. Banerjee, S., Misra, A., Yeo, J., & Agrawala, A. (2003). Energy-efficient broadcast and multicast trees for reliable wireless communication. In Proceedings of wireless communications and networking (pp. 660–667).

  12. Li, P., Guo, S., Jin, H., & Leung, V. (2010). Maximum lifetime broadcast and multicast routing in unreliable wireless ad-hoc networks. In Proceedings of 2010 IEEE GLOBECOM (pp. 1–5).

  13. Misra, A., & Banerjee, S. (2002). MRPC: Maximizing network lifetime for reliable routing in wireless environments. In Proceedings of wireless communications and networking conference (pp. 800–806).

  14. Liu, T., & Cerpa, A. E. (2014). Data-driven link quality prediction using link features. ACM Transactions on Sensor Netowrks. doi:10.1145/2530535.

  15. Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2014). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  16. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2013). Physarum optimization: A biology-inspired algorithm for the Steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 818–831.

    MathSciNet  MATH  Google Scholar 

  17. Chiong, R., Weise, T., & Michalewicz, Z. (2012). Variants of evolutionary algorithms for real-world application. Berlin: Springer.

    Book  Google Scholar 

  18. Faraji, R., & Naji, H. R. (2014). An efficient crossover architecture for hardware parallel implementation of genetic algorithm. Neurocomputing, 128, 316–327.

    Article  Google Scholar 

  19. Ashraf, R. A., & Demara, R. F. (2013). Scalable FPGA refurbishment using netlist-driven evolutionary algorithms. IEEE Transactions on Computers, 62(8), 1526–1541.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ahn, C. W., & Ramakrishna, R. S. (2002). A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Transactions on Evolutionary Computation, 6(6), 566–579.

    Article  Google Scholar 

  21. Dos Santos, P. V., Alves, J. C., & Ferreira, J. C. (2015). An FPGA framework for genetic algorithms: Solving the minimum energy broadcast problem. In Proceedings of 2015 euromicro conference on DSD (pp. 9–16).

  22. Woo, A., & Celler, D. (2003). Evaluation of efficient link reliability estimators for low-power wireless networks. Technical Report UCB//CSD-03-1270, U.C., Berkeley Computer Science Division, September.

  23. Baccour, N., Koubaa, A., Ben Jamaa, M., Youssef, H., Zuniga, M., & Alves, M. (2009). A comparative simulation study of link quality estimators in wireless sensor networks. In Proceedings of 2009 IEEE intenational symposium on MASCOTS (pp. 1–10).

  24. Feeney, L. M., & Nilsson, M. (2001). Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In Proceedings of 2001 INFOCOM (pp. 1548–1557).

  25. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  26. Li, Y., Yu, J., & Tao, D. (2014). Genetic algorithm for spanning tree construction in P2P distributed interactive applications. Neurocomputing, 140(22), 185–192.

    Google Scholar 

  27. Shaukat, U., & Anwar, Z. (2014). A fast and scalable technique for constructing multicast routing trees with optimized quality of service using a firefly based genetic algorithm. Multimedia Tools and Applications, 75(4), 2275–2301.

  28. Koumousis, V. K., & Katsaras, C. P. (2006). A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Transactions on Evolutionary Computation, 10(1), 19–28.

    Article  Google Scholar 

  29. Lipowski, A., & Lipowska, D. (2012). Roulette-wheel selection via stochastic acceptance. Physica A: Statistical Mechanics and its Application, 391(6), 2193–2196.

    Article  Google Scholar 

  30. Tseng, S. Y., Huang, Y. M., & Lin, C. C. (2006). Genetic algorithm for delay and degree-constrained multimedia broadcasting on overlay networks. Computer Communications, 29(17), 3625–3632.

    Article  Google Scholar 

  31. Complex optimization and decision-making laboratory, genetic algorithm toolbox. Availabe: http://codem.group.shef.ac.uk/index.php/ga-toolbox.

  32. Kompella, V. P., Pasquale, J. C., & Polyzos, G. C. (1993). Mulitcast routing for multimedia communication. IEEE/ACM Transactions on Networking, 1(3), 286–292.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 61402101, 61672151), Shanghai Municipal Natural Science Foundation (Grant No. 14ZR1400900), Fundamental Research Funds for the Central Universities (Grant Nos. 2232014D3-42, 2232014D3-21, 2232015D3-29), A Project Funded by the Priority Academic Program Development of Jiangsu Higer Education Institutions, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Zhu, J., Chang, S. et al. Maximizing multicast lifetime in unreliable wireless ad hoc network. Wireless Netw 24, 1175–1185 (2018). https://doi.org/10.1007/s11276-016-1399-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1399-4

Keywords

Navigation