Novel microbial nitrogen transformation processes in constructed wetlands treating municipal sewage: a mini-review

Abstract

Traditionally nitrogen transformation in constructed wetlands (CWs) has been attributed to the activities of aerobic autotrophic nitrifiers followed by anoxic heterotrophic denitrifiers. However, the nitrogen balances in such systems are far from being explained as a large fraction of the losses remain unaccounted for. The classical nitrification-denitrification theory has been successfully employed in certain unit processes by culturing fast-growing bacteria, but the CWs offer an ideal environment for slow-growing bacteria that may be beneficially exploited to achieve enhanced nitrogen removal by manipulating the environmental conditions in their favor. In the last three decades, many novel microorganisms have been isolated from CWs that have led to the discovery of some other routes that have made researchers believe could play a significant role in nitrogen transformation processes. The increased understanding of novel discerned pathways like anaerobic ammonium oxidation (ANAMMOX), heterotrophic nitrification and aerobic denitrification, which are mediated by specialized bacteria has indicated that these microorganisms could be enriched by applying selection pressures within CWs for achieving high rates of nitrogen removal. Understanding these novel nitrogen transformation processes along with the associated microbial population can provide new dimensions to the design of CWs for enhanced nitrogen removal.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Adrados B, Sa’nchez O, Arias CA et al (2014) Microbial communities from different types of natural wastewater treatment systems: vertical and horizontal flow constructed wetlands and biofilters. Water Res 55:304–312. https://doi.org/10.1016/j.watres.2014.02.011

    CAS  Article  PubMed  Google Scholar 

  2. Almeida A, Ribeiro C, Carvalho F et al (2019) Phytoremediation potential of Vetiveria zizanioides and Oryza sativa to nitrate and organic substance removal in vertical flow constructed wetland systems. Ecol Eng 138:19–27. https://doi.org/10.1016/j.ecoleng.2019.06.020

    Article  Google Scholar 

  3. Austin D, Lohan E, Verson E (2003) Nitrification and denitrification in a tidal vertical flow wetland pilot. Proc Water Environ Fed 40:333–357

    Article  Google Scholar 

  4. Austin D, Vazquez-Burney R, Dyke G, King T (2019) Nitrification and total nitrogen removal in a super-oxygenated wetland. Sci Total Environ 652:307–313. https://doi.org/10.1016/j.scitotenv.2018.10.110

    CAS  Article  PubMed  Google Scholar 

  5. Babaei AA, Azadi R, Jaafarzadeh N, Alavi N (2013) Application and kinetic evaluation of upflow anaerobic biofilm reactor for nitrogen removal from wastewater by Anammox process. J Environ Health Sci Eng 10:20. https://doi.org/10.1186/1735-2746-10-20

    CAS  Article  Google Scholar 

  6. Bishay F, Kadlec R (2005) Treatment wetland at the mussel-white mine, Ontario, Canada. In: Vymazal J (ed) Natural and constructed wetlands: nutrients, metals, and management. Backhuys Publishers, Dordrecht, pp 176–198

    Google Scholar 

  7. Chen P, Ji L, Li QX, Wang Y, Li S, Ren T, Wang L (2012) Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresour Technol 116:266–270. https://doi.org/10.1016/j.biortech.2012.02.050

    CAS  Article  PubMed  Google Scholar 

  8. Chen J, Zheng J, Li Y, Hao H, Chen J (2015) Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification-aerobic denitrification. Appl Microbiol Biotechnol 99:1–8. https://doi.org/10.1007/s00253-015-6870-0

    CAS  Article  Google Scholar 

  9. Chen D, Gu X, Zhu W, He S, Huang J, Zhou W (2019) Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios. Bioresour Technol 285:121313. https://doi.org/10.1016/j.biortech.2019.121313

    CAS  Article  PubMed  Google Scholar 

  10. Cho S, Kambey C, Nguyen VK (2020) Performance of Anammox processes for wastewater treatment: a critical review on effects of operational conditions and environmental stresses. Water 12:20. https://doi.org/10.3390/w12010020

    CAS  Article  Google Scholar 

  11. Cooper PF, Job GD, Green MB, Shutes RBE (1996) Reed beds and constructed wetlands for wastewater treatment. WRc Publications, Medmenham, Marlow, p 184

    Google Scholar 

  12. Daims H, Lebedeva EV, Pjevac P et al (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Decezaro ST, Wolff DB, Pelissari C et al (2019) Influence of hydraulic loading rate and recirculation on oxygen transfer in a vertical flow constructed wetland. Sci Total Environ 668:988–995. https://doi.org/10.1016/j.scitotenv.2019.03.057

    CAS  Article  PubMed  Google Scholar 

  14. Di Capua F, Pirozzi F, Lens PNL, Esposito G (2019) Electron donors for autotrophic denitrification. Chem Eng J 362:922–937. https://doi.org/10.1016/j.cej.2019.01.069

    CAS  Article  Google Scholar 

  15. Dong Z, Sun T (2007) A potential new process for improving nitrogen removal in constructed wetlands—promoting coexistence of partial-nitrification and ANAMMOX. Ecol Eng 31:69–78. https://doi.org/10.1016/j.ecoleng.2007.04.009

    Article  Google Scholar 

  16. Duan J, Fang H, Bing S, Chen J, Lin J (2014) Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresour Technol 179:421–428. https://doi.org/10.1016/j.biortech.2014.12.057

    CAS  Article  PubMed  Google Scholar 

  17. Fu G, Yu T, Ning K, Guo Z, Wong MH (2016) Effects of nitrogen removal microbes and partial nitrification-denitrification in the integrated vertical-flow constructed wetland. Ecol Eng 95:83–89. https://doi.org/10.1016/j.ecoleng.2016.06.054

    Article  Google Scholar 

  18. Fu G, Yu T, Huangshen L, Han J (2018) The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities. Bioresour Technol 250:290–298. https://doi.org/10.1016/j.biortech.2017.11.057

    CAS  Article  PubMed  Google Scholar 

  19. Fu G, Han J, Yu T, Huangshen L, Zhao L (2019) The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities. J Environ Manag 238:1–9. https://doi.org/10.1016/j.jenvman.2019.02.029

    CAS  Article  Google Scholar 

  20. Fux C, Siegrist H (2004) Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/ anammox: environmental and economical considerations. Water Sci Technol 50:19–26. https://doi.org/10.2166/wst.2004.0599

    CAS  Article  PubMed  Google Scholar 

  21. Gao J, Zhu T, Liu C et al (2020) Ammonium removal characteristics of heterotrophic nitrifying bacterium Pseudomonas stutzeri GEP-01 with potential for treatment of ammonium-rich wastewater. Bioprocess Biosyst Eng 43:959–969. https://doi.org/10.1007/s00449-020-02292-x

    CAS  Article  PubMed  Google Scholar 

  22. Garfí M, Flores L, Ferrer I (2017) Life cycle assessment of wastewater treatment systems for small communities: activated sludge, constructed wetlands and high rate algal ponds. J Clean Prod 161:211–219. https://doi.org/10.1016/j.jclepro.2017.05.116

    Article  Google Scholar 

  23. Gupta AB, Gupta SK (1999) Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBD biofilm. Water Res 33:555–561. https://doi.org/10.1016/S0043-1354(98)00206-1

    CAS  Article  Google Scholar 

  24. He T, Li Z, Sun Q, Xu Y, Ye Q (2016) Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour Technol 200:493–499. https://doi.org/10.1016/j.biortech.2015.10.064

    CAS  Article  PubMed  Google Scholar 

  25. Hu Y, Zhao X, Zhao Y (2014) Achieving high-rate autotrophic nitrogen removal via Canon process in a modified single bed tidal flow constructed wetland. Chem Eng J 237:329–335. https://doi.org/10.1016/j.cej.2013.10.033

    CAS  Article  Google Scholar 

  26. Ilyas H, Masih I (2017) The performance of the intensified constructed wetlands for organic matter and nitrogen removal: a review. J Environ Manag 198:372–383. https://doi.org/10.1016/j.jenvman.2017.04.098

    CAS  Article  Google Scholar 

  27. Imajo U, Tokutomi T, Furukawa K (2004) Granulation of ANAMOX microorganisms in up-floe reactors. Water Sci Technol 49:155–163. https://doi.org/10.2166/wst.2004.0749

    CAS  Article  PubMed  Google Scholar 

  28. Ingrao C, Failla S, Arcidiacono C (2020) A comprehensive review of environmental and operational issues of constructed wetland systems. Curr Opin Environ Sci Health 13:35–45. https://doi.org/10.1016/j.coesh.2019.10.007

    Article  Google Scholar 

  29. Jetten MS, Strous M, Van de Pas-Schoonen KT et al (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437. https://doi.org/10.1111/j.1574-6976.1998.tb00379.x

    CAS  Article  PubMed  Google Scholar 

  30. Jetten MSM, Cirpus I, Kartal B et al (2005) 1994−2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Trans 33:119–123. https://doi.org/10.1042/BST0330119

    CAS  Article  PubMed  Google Scholar 

  31. Kadlec R, Wallace S (2008) Treatment wetlands, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  32. Kartal B, Kuypers MMM, Lavik G, Schalk J, Op den Camp HJM, Jetten MSM, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642

    CAS  Article  Google Scholar 

  33. Koncagül E, Tran M, Connor R, Uhlenbrook S, CordeiroOrtigara A (2017) United Nations world water report, facts and figures, wastewater, the untapped resource. UNESCO and World Water Assessment Programme. https://unesdoc.unesco.org/ark:/48223/pf0000247153. Accessed 15 Oct 2020

  34. Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326. https://doi.org/10.1038/nrmicro1857

    CAS  Article  PubMed  Google Scholar 

  35. Lee CG, Fletcher TD, Sun G (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9:11–22. https://doi.org/10.1002/elsc.200800049

    CAS  Article  Google Scholar 

  36. Lei Y, Wang Y, Liu H, Xi C, Song L (2016) A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium. Appl Microbiol Biotechnol 100:4219–4229. https://doi.org/10.1007/s00253-016-7290-5

    CAS  Article  PubMed  Google Scholar 

  37. Li J, Hu Z, Li F, Fan J, Zhang J, Li F, Hu H (2019) Effect of oxygen supply strategy on nitrogen removal of biochar-based vertical subsurface flow constructed wetland: intermittent aeration and tidal flow. Chemosphere 223:366–374. https://doi.org/10.1016/j.chemosphere.2019.02.082

    CAS  Article  PubMed  Google Scholar 

  38. Lin Z, Xu F, Wang Y, Huang W, Zhou J, He Q, Zhou J (2020) Autotrophic nitrogen removal by partial nitrification-anammox process in two-stage sequencing batch constructed wetlands for low-strength ammonium wastewater. J Water Process 38:101625. https://doi.org/10.1016/j.jwpe.2020.101625

    Article  Google Scholar 

  39. Lu J, Guo Z, Kang Y, Fan J, Zhang J (2020) Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands. Ecotoxicol Environ Saf 205:111330. https://doi.org/10.1016/j.ecoenv.2020.111330

    CAS  Article  PubMed  Google Scholar 

  40. Luo B, Ge Y, Han W et al (2016) Decreases in ammonia volatilization in response to greater plant diversity in microcosms of constructed wetlands. Atmos Environ 142:414–419. https://doi.org/10.1016/j.atmosenv.2016.08.030

    CAS  Article  Google Scholar 

  41. Lv P, Luo J, Zhuang X, Zhang D, Huang Z, Bai Z (2017) Diversity of culturable aerobic denitrifying bacteria in the sediment, water and biofilms in Liangshui River of Beijing, China. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-09556-9

    CAS  Article  Google Scholar 

  42. Mora M, Guisasola A, Gamisans X, Gabriel D (2014) Examining thiosulfate-driven autotrophic denitrification through respirometry. Chemosphere 113:1–8. https://doi.org/10.1016/j.chemosphere.2014.03.083

    CAS  Article  PubMed  Google Scholar 

  43. Moshiri GA (2020) Constructed wetlands for water quality improvement. CRC Press

  44. Mulder A, Van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–183. https://doi.org/10.1111/j.1574-6941.1995.tb00281.x

    CAS  Article  Google Scholar 

  45. Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK (2013) Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int Biodeterior Biodegradation 78:67–73. https://doi.org/10.1016/j.ibiod.2013.01.001

    CAS  Article  Google Scholar 

  46. Paranychianakis NV, Tsiknia M, Kalogerakis N (2016) Pathways regulating the removal of nitrogen in planted and unplanted subsurface flow constructed wetlands. Water Res 102:321–329. https://doi.org/10.1016/j.watres.2016.06.048

    CAS  Article  PubMed  Google Scholar 

  47. Paredes D, Kuschk P, Mbwette TSA, Stange F, Müller RA, Köser H (2007) New aspects of microbial nitrogen transformations in the context of wastewater treatment - a review. Eng Life Sci 7:13–25. https://doi.org/10.1002/elsc.200620170

    CAS  Article  Google Scholar 

  48. Park JH, Kim SH, Delaune RD, Cho JS, Heo JS, Ok YS, Seo DC (2015) Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations. Agric Water Manag 162:1–14. https://doi.org/10.1016/j.agwat.2015.08.001

    CAS  Article  Google Scholar 

  49. Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San Diego, p 340

    Google Scholar 

  50. Pelissari C, Ávila C, Trein CM, García J, de Armas RD, Sezerino PH (2017) Nitrogen transforming bacteria within a full-scale partially saturated vertical subsurface flow constructed wetland treating urban wastewater. Sci Total Environ 574:390–399. https://doi.org/10.1016/j.scitotenv.2016.08.207

    CAS  Article  PubMed  Google Scholar 

  51. Pelissari C, Guivernau M, Viñas M et al (2018) Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands. Water Res 141:185–195. https://doi.org/10.1016/j.watres.2018.05.002

    CAS  Article  PubMed  Google Scholar 

  52. Rampuria A, Gupta AB, Brighu U (2020) Nitrogen transformation processes and mass balance in deep constructed wetlands treating sewage, exploring the anammox contribution. Bioresour Technol 314:123737. https://doi.org/10.1016/j.biortech.2020.123737

    CAS  Article  PubMed  Google Scholar 

  53. Reddy KR, Patrick WH (1984) Nitrogen transformations and loss in flooded soils and sediments. CRC Crit Rev Environ Control 13:273–309. https://doi.org/10.1080/10643388409381709

    CAS  Article  Google Scholar 

  54. Rijn JV, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquac Eng 34:364–376. https://doi.org/10.1016/j.aquaeng.2005.04.004

    Article  Google Scholar 

  55. Saeed T, Sun G (2012) A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J Environ Manag 112:429–448. https://doi.org/10.1016/j.jenvman.2012.08.011

    CAS  Article  Google Scholar 

  56. Saeed T, Sun G (2017) A comprehensive review on nutrients and organics removal from different wastewaters employing subsurface flow constructed wetlands. Crit Rev Environ Sci Technol 47:203–288. https://doi.org/10.1080/10643389.2017.1318615

    CAS  Article  Google Scholar 

  57. Saeed T, Miah MJ, Khan T, Ove A (2020) Pollutant removal employing tidal flow constructed wetlands: media and feeding strategies. Chem Eng J 382:122874. https://doi.org/10.1016/j.cej.2019.122874

    CAS  Article  Google Scholar 

  58. Savant NK, Dedatta SK (1982) Nitrogen transformations in wetland rice soils. Adv Agron 35:241–302. https://doi.org/10.1016/S0065-2113(08)60327-2

    CAS  Article  Google Scholar 

  59. Senzia MA, Mashauri DA, Mayo AW (2003) Suitability of constructed wetlands and waste stabilisation ponds in wastewater treatment: nitrogen transformation and removal. Phys Chem Earth, Parts A/B/C 28:1117–1124. https://doi.org/10.1016/j.pce.2003.08.033

    Article  Google Scholar 

  60. Shen Y, Zhuang L, Zhang J, Fan J, Yang T, Sun S (2019) A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands. Chem Eng J 359:706–712. https://doi.org/10.1016/j.cej.2018.11.152

    CAS  Article  Google Scholar 

  61. Shipin O, Koottatep T, Khanh N, Polprasert C (2005) Integrated natural treatment systems for developing communities: low-tech N-removal through the fluctuating microbial pathways. Water Sci Technol 51:299–306. https://doi.org/10.2166/wst.2005.0488

    CAS  Article  PubMed  Google Scholar 

  62. Stottmeister U, Wießner A, Kuschk P et al (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117. https://doi.org/10.1016/j.biotechadv.2003.08.010

    CAS  Article  PubMed  Google Scholar 

  63. Stowell R, Ludwig R, Colt J, Tchobanoglous G (1981) Concepts in aquatic treatment system design. J Env Eng Div ASCE 107:919–940

    Article  Google Scholar 

  64. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596. https://doi.org/10.1007/s002530051340

    CAS  Article  Google Scholar 

  65. Su JF, Zhang K, Huang TL, Wen G, Guo L, Yang SF (2015) Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium, Acinetobacter sp.SYF26. Microbiology 161:829–837. https://doi.org/10.1099/mic.0.000047

    CAS  Article  PubMed  Google Scholar 

  66. Sun G, Austin D (2007) Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: evidence from a mass balance study. Chemosphere 68:1120–1128. https://doi.org/10.1016/j.chemosphere.2007.01.060

    CAS  Article  PubMed  Google Scholar 

  67. Sun G, Zhu Y, Saeed T, Zhang G, Lu X (2012) Nitrogen removal and microbial community profiles in six wetland columns receiving high ammonia load. Chem Eng J 203:326–332. https://doi.org/10.1016/j.cej.2012.07.052

    CAS  Article  Google Scholar 

  68. Takenaka S, Zhou Q, Kuntiya A, Seesuriyachan P, Murakami S, Aoki K (2007) Isolation and characterization of thermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions. Biotechnol Lett 29:385–390. https://doi.org/10.1007/s10529-006-9255-8

    CAS  Article  PubMed  Google Scholar 

  69. Tan X, Yang YL, Li X et al (2020) Intensified nitrogen removal by heterotrophic nitrification aerobic denitrification bacteria in two pilot-scale tidal flow constructed wetlands: influence of influent C/N ratios and tidal strategies. Bioresour Technol 302:122803. https://doi.org/10.1016/j.biortech.2020.122803

    CAS  Article  PubMed  Google Scholar 

  70. Tang S, Liao Y, Xu Y, Dang Z, Zhu X, Ji G (2020) Microbial coupling mechanisms of nitrogen removal in constructed wetlands: a review. Bioresour Technol 314:123759. https://doi.org/10.1016/j.biortech.2020.123759

    CAS  Article  PubMed  Google Scholar 

  71. Tanner CC, Kadlec RH, Gibbs MM, Sukias JPS, Nguyen LM (2002) Nitrogen processing gradients in subsurface-flow treatment wetlands- influence of wastewater characteristics. Ecol Eng 18:499–520. https://doi.org/10.1016/S0925-8574(02)00011-3

    Article  Google Scholar 

  72. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering, treatment, and reuse, 4th edn. McGraw Hill, New York

    Google Scholar 

  73. Van de Graaf AA, de Bruijn P, Robertson LA, Jetten MS, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196. https://doi.org/10.1099/13500872-142-8-2187

    Article  Google Scholar 

  74. vanDongen LGJM, Jetten MSM, van Loos- drecht MCM (2001) The SHARON®-Anammox® process for the treatment of ammonium rich wastewater. Water Sci Technol 44:153–160. https://doi.org/10.2166/wst.2001.0037

  75. Volcke EI, van Loosdrecht MC, Vanrolleghem PA (2006) Controlling the nitrite: ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process. Water Sci Technol 53:45–54. https://doi.org/10.2166/wst.2006.109

    CAS  Article  PubMed  Google Scholar 

  76. Vymazal J (1995) Algae and element cycling in wetlands. Lewis Publishers, Chelsea, p 698

    Google Scholar 

  77. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014

    CAS  Article  Google Scholar 

  78. Vymazal J (2013) The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res 47:4795–4811. https://doi.org/10.1016/j.watres.2013.05.029

    CAS  Article  PubMed  Google Scholar 

  79. Wallace S, Austin D (2008) Emerging models for nitrogen removal in treatment wetlands. J Environ Health 71:10–17

    CAS  PubMed  Google Scholar 

  80. Winkler MK, Straka L (2019) New directions in biological nitrogen removal and recovery from wastewater. Curr Opin Biotechnol 57:50–55. https://doi.org/10.1016/j.copbio.2018.12.007

    CAS  Article  PubMed  Google Scholar 

  81. Xia Z, Liu G, She Z, Gao M, Zhao Y, Guo L, Jin C (2020) Performance and bacterial communities in unsaturated and saturated zones of a vertical-flow constructed wetland with continuous-feed. Bioresour Technol 315:123859. https://doi.org/10.1016/j.biortech.2020.123859

    CAS  Article  PubMed  Google Scholar 

  82. Xu Z, Du X, Wang S (2009) Simultaneous nitrification and denitrification in non-planted pilot-scale modified vertical flow constructed wetland system. Can J Civ Eng 36:850–858. https://doi.org/10.1139/S08-058

    CAS  Article  Google Scholar 

  83. Yao S, Ni J, Ma T, Li C (2013) Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresour Technol 139:80–86. https://doi.org/10.1016/j.biortech.2013.03.189

    CAS  Article  PubMed  Google Scholar 

  84. Zehr J, Ward B (2002) Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl Environ Microbiol 68:1015–1024. https://doi.org/10.1128/AEM.68.3.1015-1024.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Zhan X, Yang Y, Chen F, Wu S, Zhu R (2020) Treatment of secondary effluent by a novel tidal-integrated vertical flow constructed wetland using raw sewage as a carbon source: contribution of partial denitrification-anammox. Chem Eng J 395:125165. https://doi.org/10.1016/j.cej.2020.125165

    CAS  Article  Google Scholar 

  86. Zhang QL, Liu Y, Ai GM, Miao LL, Zheng HY, Liu ZP (2012) The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour Technol 108:35–44. https://doi.org/10.1016/j.biortech.2011.12.139

    CAS  Article  PubMed  Google Scholar 

  87. Zhang W, Yan C, Shen J, Wei R, Gao Y, Miao A, Xiao L, Yang L (2019) Characterization of aerobic denitrifying bacterium Pseudomonas mendocina strain GL6 and its potential application in wastewater treatment plant effluent. Int J Environ Res Public Health 16:364. https://doi.org/10.3390/ijerph16030364

    CAS  Article  PubMed Central  Google Scholar 

  88. Zhang QY, Yang P, Liu LS, Liu ZJ (2020) Formulation and characterization of a heterotrophic nitrification-aerobic denitrification synthetic microbial community and its application to livestock wastewater treatment. Water 12:218. https://doi.org/10.3390/w12010218

    CAS  Article  Google Scholar 

  89. Zhi W, Ji G (2014) Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints. Water Res 64:32–41. https://doi.org/10.1016/j.watres.2014.06.035

    CAS  Article  PubMed  Google Scholar 

  90. Zhuang LL, Yang T, Zhang J, Li X (2019) The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: a review. Bioresour Technol 293:122086. https://doi.org/10.1016/j.biortech.2019.122086

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Department of Science and Technology, Govt. of India for a part of this work (Grant no. DST/TM/WTI/WIC/2 K17/83).

Funding

Department of Science and Technology, Govt. of India (Grant no. DST/TM/WTI/WIC/2 K17/83).

Author information

Affiliations

Authors

Contributions

ABG contributed to the study conception. Data collection, data analysis, and preparation of the initial draft of the manuscript were carried out by AR. The initial draft was revised by NMK. All the authors contributed to the improvement of the manuscript and have read and approved the final manuscript.

Corresponding author

Correspondence to AkhilendraBhushan Gupta.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rampuria, A., Kulshreshtha, N.M., Gupta, A. et al. Novel microbial nitrogen transformation processes in constructed wetlands treating municipal sewage: a mini-review. World J Microbiol Biotechnol 37, 40 (2021). https://doi.org/10.1007/s11274-021-03001-w

Download citation

Keywords

  • Aerobic denitrification
  • Anaerobic ammonium oxidation
  • Constructed wetlands
  • Heterotrophic nitrification