Molecular mechanisms in grass-Epichloë interactions: towards endophyte driven farming to improve plant fitness and immunity

Abstract

All plants harbor many microbial species including bacteria and fungi in their tissues. The interactions between the plant and these microbes could be symbiotic, mutualistic, parasitic or commensalistic. Mutualistic microorganisms are endophytic in nature and are known to play a role in plant growth, development and fitness. Endophytes display complex diversity depending upon the agro-climatic conditions and this diversity could be exploited for crop improvement and sustainable agriculture. Plant-endophyte partnerships are highly specific, several genetic and molecular cascades play a key role in colonization of endophytes in host plants leading to rapid changes in host and endophyte metabolism. This results in the accumulation of secondary metabolites, which play an important role in plant defense against biotic and abiotic stress conditions. Alkaloids are one of the important class of metabolites produced by Epichloë genus and other related classes of endophytes and confer protection against insect and mammalian herbivory. In this context, this review discusses the evolutionary aspects of the Epichloë genus along with key molecular mechanisms determining the lifestyle of Epichloë endophytes in host system. Novel hypothesis is proposed to outline the initial cellular signaling events during colonization of Epichloë in cool season grasses. Complex clustering of alkaloid biosynthetic genes and molecular mechanisms involved in the production of alkaloids have been elaborated in detail. The natural defense and advantages of the endophyte derived metabolites have also been extensively discussed. Finally, this review highlights the importance of endophyte-arbitrated plant immunity to develop novel approaches for eco-friendly agriculture.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ambrose KV, Belanger FC (2012) SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS ONE 7:e53214. https://doi.org/10.1371/journal.pone.0053214

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Ariyawansa SKG (2015) Sensing and signalling mechanical stress during intercalary growth in Epichloë grass endophytes: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Genetics at Massey University, Manawatu. https://hdl.handle.net/10179/7750

  3. Arnold SL and Panaccione DG (2017) biosynthesis of the pharmaceutically important fungal ergot alkaloid dihydrolysergic acid requires a specialized allele of cloA. Appl Environ Microbiol 83(14):e00805–e817. https://doi.org/10.1128/AEM.00805-17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Culbreath A (2009) Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology 99:1336–1345. https://doi.org/10.1094/PHYTO-99-12-1336

    CAS  Article  PubMed  Google Scholar 

  5. Ball OJ, Gwinn KD, Pless CD, Popay AJ (2011) Endophyte isolate and host grass effects on Chaetocnema pulicaria (Coleoptera: Chrysomelidae) feeding. J Econ Entomol 104:665–672. https://doi.org/10.1603/EC10262

    Article  PubMed  Google Scholar 

  6. Barker GM, Patchett BJ, Cameron NE (2015) Epichloë uncinata infection and loline content afford Festulolium grasses protection from black beetle (Heteronychus arator). New Zeal J Agr Res 58:35–56

    CAS  Article  Google Scholar 

  7. Bastias DA, Ueno AC, Machado Assefh CR, Alvarez AE, Young CA, Gundel PE (2017) Metabolism or behavior: explaining the performance of aphids on alkaloid-producing fungal endophytes in annual ryegrass (Lolium multiflorum). Oecologia 185:245–256. https://doi.org/10.1007/s00442-017-3940-2

    Article  PubMed  Google Scholar 

  8. Becker M, Becker Y, Green K, Scott B (2016) The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. New Phytol 211:240–254. https://doi.org/10.1111/nph.13931

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Becker Y, Eaton CJ, Brasell E, May KJ, Becker M, Hassing B, Cartwright GM, Reinhold L, Scott B (2015) The fungal cell wall integrity MAPK cascade is crucial for hyphal network formation and maintenance of restrictive growth of Epichloë festucae in symbiosis with Lolium perenne. Mol Plant Microbe Interact 28:69–85. https://doi.org/10.1094/MPMI-06-14-0183-R

    CAS  Article  PubMed  Google Scholar 

  10. Berry D, Takach JE, Schardl CL, Charlton ND, Scott B, Young CA (2015) Disparate independent genetic events disrupt the secondary metabolism gene perA in certain symbiotic Epichloë species. Appl Environ Microbiol 81:2797–2807. https://doi.org/10.1128/AEM.03721-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Bills GF, González-Menéndez V, Martín J, Platas G, Fournier J, Peršoh D, Stadler M (2012) Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. PLoS ONE 7:e46687. https://doi.org/10.1371/journal.pone.0046687

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Bilovol Y, Panaccione DG (2016) Functional analysis of the gene controlling hydroxylation of festuclavine in the ergot alkaloid pathway of Neosartorya fumigata. Curr Genet 62:853–860. https://doi.org/10.1007/s00294-016-0591-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Bragg PE, Maust MD, Panaccione DG (2017) Ergot alkaloid biosynthesis in the Maize (Zea mays) ergot fungus Claviceps gigantea. J Agr Food Chem 65:10703–10710. https://doi.org/10.1021/acs.jafc.7b04272

    CAS  Article  Google Scholar 

  14. Brosi GB, McCulley RL, Bush LP, Nelson JA, Classen AT, Norby RJ (2011) Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol 189(3):797–805. https://doi.org/10.1111/j.1469-8137.2010.03532.x

    Article  PubMed  Google Scholar 

  15. Carvalho De Lucena KF, Rodrigues JM, Campos ÉM, Dantas AF, Pfister JA, Cook D, Medeiros RM, Riet-Correa F (2014) Poisoning by Ipomoea asarifolia in lambs by the ingestion of milk from ewes that ingest the plant. Toxicon 92:129–132. https://doi.org/10.1016/j.toxicon.2014.10.019

    CAS  Article  PubMed  Google Scholar 

  16. Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA (2014) Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol Ecol 90:276–289. https://doi.org/10.1111/1574-6941.12393

    CAS  Article  PubMed  Google Scholar 

  17. Chen T, Li C, White JF, Nan Z (2019) Effect of the fungal endophyte Epichloë bromicola on polyamines in wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 436:29–48. https://doi.org/10.1007/s11104-018-03913-x

    CAS  Article  Google Scholar 

  18. Chen T, Simpson WR, Song Q, Chen S, Li C, Ahmad RZ (2018) Identification of Epichloë endophytes associated with wild barley (Hordeum brevisubulatum) and characterisation of their alkaloid biosynthesis. New Zeal J Agr Res 62:131–149. https://doi.org/10.1080/00288233.2018.1461658

    CAS  Article  Google Scholar 

  19. Cheng JZ, Coyle CM, Panaccione DG, Oconnor SE (2010) Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc 132:12835–12837. https://doi.org/10.1021/ja105785p

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Christensen MJ, Bennett RJ, Schmid J (2002) Growth of Epichloë/Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106:93–106. https://doi.org/10.1017/S095375620100510X

    Article  Google Scholar 

  21. Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR (2008) Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93. https://doi.org/10.1016/j.fgb.2007.07.013

    Article  PubMed  Google Scholar 

  22. Cotteret S, Chernoff J (2002) The evolutionary history of effectors downstream of Cdc42 and Rac. Genome Biol. https://doi.org/10.1186/gb-2002-3-2-reviews0002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Coyle CM, Cheng JZ, Oconnor SE, Panaccione DG (2010) An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl. Environ. Microbiol 76:3898–3903. https://doi.org/10.1128/AEM.02914-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL (2017) Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytol 213:324–337. https://doi.org/10.1111/nph.14103

    CAS  Article  PubMed  Google Scholar 

  25. Dinkins RD, Nagabhyru P, Young CA, West CP, Schardl CL (2019) Transcriptome analysis and differential expression in tall fescue harboring different endophyte strains in response to water deficit. Plant Genome. https://doi.org/10.3835/plantgenome2018.09.0071

    Article  PubMed  Google Scholar 

  26. Eaton C, Mitic M, Scott B (2011a) Signaling in the Epichloë¨ festucae: perennial ryegrass mutualistic symbiotic interaction. In: Perotto S, Baluska F (eds) Signaling and communication in plant symbiosis. Springer, Basel, pp 143–181

    Google Scholar 

  27. Eaton CJ, Cox MP, Scott B (2011b) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195. https://doi.org/10.1016/j.plantsci.2010.10.002

    CAS  Article  PubMed  Google Scholar 

  28. Eaton CJ, Cox MP, Ambrose B, Becker M, Hesse U, Schardl CL, Scott B (2010) Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant Physiol 153:1780–1794. https://doi.org/10.1104/pp.110.158451

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Eaton CJ, Dupont PY, Solomon P, Clayton W, Scott B, Cox MP (2015) A core gene set describes the molecular basis of mutualism and antagonism in Epichloë spp. Mol Plant Microbe Interact 28:218–231. https://doi.org/10.1094/MPMI-09-14-0293-FI

    CAS  Article  PubMed  Google Scholar 

  30. Ekanayake NP, Hand ML, Spangenberg GC, Forster JW, Guthridge MK (2012) Genetic diversity and host specificity of fungal endophyte taxa in fescue pasture grasses. Crop Sci 52:2243–2252

    Article  Google Scholar 

  31. Faeth SH, Bush LP, Sullivan TJ (2002) Peramine alkaloid variation in Neotyphodium-infected Arizona fescue: effects of endophyte and host genotype and environment. J Chem Ecol 28:1511–1526. https://doi.org/10.1023/A:1019916227153

    CAS  Article  PubMed  Google Scholar 

  32. Fleetwood DJ, Scott B, Lane GA, Tanaka A, Johnson RD (2007) A complex ergovaline gene cluster in Epichloe endophytes of grasses. Appl Environ Microbiol 73:2571–2579. https://doi.org/10.1128/AEM.00257-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Fleetwood DJ, Khan AK, Johnson RD et al (2011) Abundant degenerate miniature inverted-repeat transposable elements in genomes of epichloid fungal endophytes of grasses. Genome Biol Evol 3:1253–1264. https://doi.org/10.1093/gbe/evr098

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Fletcher LR, Finch SC, Sutherland BL, De Nicolo G, Mace WJ, Van Koten C, Hume DE (2017) The occurrence of ryegrass staggers and heat stress in sheep grazing ryegrass-endophyte associations with diverse alkaloid profiles. New Zeal Vet J 65:232–241. https://doi.org/10.1080/00480169.2017.1329673

    CAS  Article  Google Scholar 

  35. Florea S, Panaccione DG, Schardl CL (2017) Ergot alkaloids of the family Clavicipitaceae. Phytopathology 107:504–518. https://doi.org/10.1094/PHYTO-12-16-0435-RVW

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Florea S, Phillips TD, Panaccione DG, Farman ML, Schardl CL (2016) Chromosome-end knockoff strategy to reshape alkaloid profiles of a fungal endophyte. G3 Bethesda 6:2601–2610. https://doi.org/10.1534/g3.116.029686

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Foote AP, Harmon DL, Strickland JR, Bush LP, Klotz JL (2011) Effect of ergot alkaloids on contractility of bovine right ruminal artery and vein. J Anim Sci 89:2944–2949. https://doi.org/10.2527/jas.2010-3626

    CAS  Article  PubMed  Google Scholar 

  38. Fuchs B, Krischke M, Mueller MJ, Krauss J (2013) Peramine and lolitrem B from endophyte-grass associations cascade up the food chain. J Chem Ecol 39:1385–1389. https://doi.org/10.1007/s10886-013-0364-2

    CAS  Article  PubMed  Google Scholar 

  39. Fuchs B, Krischke M, Mueller MJ, Krauss J (2017) Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecol 29:52–58. https://doi.org/10.1016/j.funeco.2017.06.003

    Article  Google Scholar 

  40. Goda AA, Siddique AB, Mohyeldin M, Ayoub NM, El Sayed KA (2018) The maxi-K (BK) channel antagonist penitrem a as a novel breast cancer-targeted therapeutic. Mar Drugs 16:157. https://doi.org/10.3390/md16050157

    CAS  Article  PubMed Central  Google Scholar 

  41. Gagic M, Faville MJ, Zhang W, Forester NT, Rolston MP, Johnson RD, Ganesh S, Koolaard JP, Easton HS, Hudson D, Johnson LJ, Moon CD, Voisey CR (2018) Seed transmission of Epichloë endophytes in lolium perenne is heavily influencedby host genetics. Front Plant Sci 9:1580. https://doi.org/10.3389/fpls.2018.01580

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317. https://doi.org/10.1007/s00425-014-2232-x

    CAS  Article  PubMed  Google Scholar 

  43. Goetz KE, Coyle CM, Cheng JZ, O'connor Panaccione SEDG (2011) Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211. https://doi.org/10.1007/s00294-011-0336-4

    CAS  Article  PubMed  Google Scholar 

  44. Green KA, Becker Y, Tanaka A, Takemoto D, Fitzsimons HL, Seiler S, Lalucque H, Silar P, Scott B (2017) SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium perenne. Mol Microbiol 103:657–677. https://doi.org/10.1111/mmi.13580

    CAS  Article  PubMed  Google Scholar 

  45. Green KA, Becker Y, Fitzsimons HL, Scott B (2016) An Epichloë festucae homologue of MOB3, a component of the STRIPAK complex, is required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. Mol Plant Pathol 17:1480–1492. https://doi.org/10.1111/mpp.12443

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Guerre P (2015) Ergot alkaloids produced by endophytic fungi of the genus Epichloë. Toxins (Basel) 7(3):773–790. https://doi.org/10.3390/toxins7030773

    CAS  Article  Google Scholar 

  47. Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P (2005) The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry 66:1312–1320. https://doi.org/10.1016/j.phytochem.2005.04.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Haarmann T, Ortel I, Tudzynski P, Keller U (2006) Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways. ChemBioChem 7:645–652. https://doi.org/10.1002/cbic.200500487-

    CAS  Article  PubMed  Google Scholar 

  49. Havemann J, Vogel D, Loll B, Keller U (2014) Cyclolization of D-lysergic acid alkaloid peptides. Chem Biol 21:146–155. https://doi.org/10.1016/j.chembiol.2013.11.008

    CAS  Article  PubMed  Google Scholar 

  50. Helander M, Phillips T, Faeth SH et al (2016) Alkaloid quantities in endophyte-infected tall fescue are affected by the plant-fungus combination and environment. J Chem Ecol 42:118–126. https://doi.org/10.1007/s10886-016-0667-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Hennessy LM, Popay AJ, Finch SC, Clearwater MJ, Cave VM (2016) Temperature and plant genotype alter alkaloid concentrations in ryegrass infected with an Epichloë endophyte and this affects an insect herbivore. Front Plant Sci 7:1097. https://doi.org/10.3389/fpls.2016.01097

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hettiarachchige IK, Elkins AC, Reddy P, Mann RC, Guthridge KM, Sawbridge TI, Forster JW, Spangenberg GC (2019) Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis. Mol Genet Genomics 294:315–328. https://doi.org/10.1007/s00438-018-1510-x

    CAS  Article  PubMed  Google Scholar 

  53. Imlach WL, Finch SC, Zhang Y, Dunlop J, Dalziel JE (2011) Mechanism of action of lolitrem B, a fungal endophyte derived toxin that inhibits BK large conductance Ca2+-activated K+ channels. Toxicon 57:686–694. https://doi.org/10.1016/j.toxicon.2011.01.013

    CAS  Article  PubMed  Google Scholar 

  54. Jakubczyk D, Cheng JZ, O'connor SE (2014) Biosynthesis of the ergot alkaloids. Nat Prod Rep 31:1328–1338. https://doi.org/10.1039/C4NP00062E

    CAS  Article  PubMed  Google Scholar 

  55. Jia T, Shymanovich T, Gao Y, Faeth SH (2015) Plant population and genotype effects override the effects of Epichloë endophyte species on growth and droughtstress response of Achnatherum robustum plants in two natural grass populations. J Plant Ecol 8:633–641. https://doi.org/10.1093/jpe/rtv004

    Article  Google Scholar 

  56. Juvvadi PR, Lamoth F, Steinbach WJ (2014) Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol Rev 28:56–69. https://doi.org/10.1016/j.fbr.2014.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71(2011):337–344

    Google Scholar 

  58. Kauppinen M, Helander M, Anttila N, Saloniemi I, Saikkonen K (2018) Epichloë endophyte effects on leaf blotch pathogen (Rhynchosporium sp.) of tall fescue (Schedonorus phoenix) vary among grass origin and environmental conditions. Plant Ecol Divers 11:625–635. https://doi.org/10.1080/17550874.2019.1613451

    Article  Google Scholar 

  59. Kayano Y, Tanaka A, Takemoto D (2018) Two closely related Rho GTPases, Cdc42 and RacA, of the endophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant. PLoS Pathog 14:e1006840. https://doi.org/10.1371/journal.ppat.1006840

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Klotz JL (2015) Activities and effects of ergot alkaloids on livestock physiology and production. Toxins (Basel). 7:2801–2821. https://doi.org/10.3390/toxins7082801

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8(9):e71805. https://doi.org/10.1371/journal.pone.0071805

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Kusari S, Lamshöft M, Kusari P, Gottfried S, Zühlke S, Louven K, Hentschel U, Kayser O, Spiteller M (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584. https://doi.org/10.1021/np500219a

    CAS  Article  PubMed  Google Scholar 

  63. Kutil BL, Greenwald C, Liu G, Spiering MJ, Schardl CL, Wilkinson HH (2007) Comparison of loline alkaloid gene clusters across fungal endophytes: Predicting the co-regulatory sequence motifs and the evolutionary history. Fungal Genet Biol 44:1002–1010. https://doi.org/10.1016/j.fgb.2007.04.003

    CAS  Article  PubMed  Google Scholar 

  64. Lee ST, Gardner DR, Cook D (2017) Identification of indole diterpenes in Ipomoea asarifolia and Ipomoea muelleri, plants tremorgenic to livestock. J Agr Food Chem 65:5266–5277. https://doi.org/10.1021/acs.jafc.7b01834

    CAS  Article  Google Scholar 

  65. Li F, Guo Y, Christensen MJ, Gao P, Li Y, Duan T (2018) An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 28:159–169. https://doi.org/10.1007/s00572-017-0813-9

    Article  PubMed  Google Scholar 

  66. Liu M, Panaccione DG, Schardl CL (2009) Phylogenetic analyses reveal monophyletic origin of the ergot alkaloid gene dmaW in fungi. Evol Bioinform Online 5:15–30. https://doi.org/10.4137/ebo.s2633

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lin W, Kuang Y, Wang J et al (2019) Effects of seasonal variation on the alkaloids of different ecotypes of Epichloë endophyte-festuca sinensis associations. Front Microbiol 10:1695. https://doi.org/10.3389/fmicb.2019.01695

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu C, Tagami K, Minami A, Matsumoto T, Frisvad JC, Suzuki H, Ishikawa J, Gomi K, Oikawa H (2015) Reconstitution of biosynthetic machinery for the synthesis of the highly elaborated indole diterpene penitrem. Angew Chem Int Ed 54:5748–5752. https://doi.org/10.1002/anie.201501072

    CAS  Article  Google Scholar 

  69. Liu J, Nagabhyru P, Schardl CL (2017) Epichloë festucae endophytic growth in florets, seeds, and seedlings of perennial ryegrass (Lolium perenne). Mycologia 109:691–700. https://doi.org/10.1080/00275514.2017.1400305

    Article  PubMed  Google Scholar 

  70. Lorenz N, Olsovská J, Sulc M, Tudzynski P (2010) Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I. Appl Environ Microbiol 76:1822–1830. https://doi.org/10.1128/aem.00737-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Lorenz N, Wilson EV, Machado C, Schardl CL, Tudzynski P (2007) Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis. Appl Environ Microbiol 73:7185–7191. https://doi.org/10.1128/aem.01040-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Luo H, Xie L, Zeng J, Xie J (2015) Biosynthesis and regulation of bioprotective alkaloids in the Gramineae endophytic fungi with implications for herbivores deterrents. Curr Microbiol 71:719–724. https://doi.org/10.1007/s00284-015-0906-7

    CAS  Article  PubMed  Google Scholar 

  73. Ludlow EJ, Vassiliadis S, Ekanayake PN et al (2019) Analysis of the indole diterpene gene cluster for biosynthesis of the epoxy-janthitrems in Epichloë endophytes. Microorganisms 7(11):560. https://doi.org/10.3390/microorganisms7110560

    CAS  Article  PubMed Central  Google Scholar 

  74. Johnson LJ, de Bonth ACM, Briggs LR et al (2013) The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers 60:171–188. https://doi.org/10.1007/s13225-013-0239-4

    Article  Google Scholar 

  75. Martínez-Soto D, Ruiz-Herrera J (2017) Functional analysis of the MAPK pathways in fungi. Rev Iberoam Micol 34:192–202. https://doi.org/10.1016/j.riam.2017.02.006

    Article  PubMed  Google Scholar 

  76. Matsukura K, Shiba T, Sasaki T, Yoshida K, Matsumura M (2014) Dynamics of Neotyphodium uncinatum and N-formylloline in Italian ryegrass, and their relation to insect resistance in the field. J Appl Microbiol 116:400–407. https://doi.org/10.1111/jam.12374

    CAS  Article  PubMed  Google Scholar 

  77. Matuschek M, Wallwey C, Wollinsky B, Xie X, Li SM (2012) In vitro conversion of chanoclavine-I aldehyde to the stereoisomers festuclavine and pyroclavine controlled by the second reduction step. RSC Adv 2:3662–3669. https://doi.org/10.1039/C2RA20104F

    CAS  Article  Google Scholar 

  78. Matuschek M, Wallwey C, Xie X, Li SM (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 7:4328–4335. https://doi.org/10.1039/c0ob01215g

    CAS  Article  Google Scholar 

  79. Miles ED, Xue Y, Strickland JR, Boling JA, Matthews JC (2011) Ergopeptines bromocriptine and ergovaline and the dopamine type-2 receptor inhibitor domperidone inhibit bovine equilibrative nucleoside transporter 1-like activity. J Agr Food Chem 59:9691–9699. https://doi.org/10.1021/jf201713m

    CAS  Article  Google Scholar 

  80. Mirzahossini Z, Shabani L, Sabzalian MR, Sharifi-Tehrani M (2015) ABC transporter and metallothionein expression affected by NI and Epichloe endophyte infection in tall fescue. Ecotoxicol Environ Saf 120:13–19. https://doi.org/10.1016/j.ecoenv.2015.05.025

    CAS  Article  PubMed  Google Scholar 

  81. Mitic M, Berry D, Brasell E, Green K, Young CA, Saikia S, Rakonjac J, Scott B (2018) Disruption of calcineurin catalytic subunit (cnaA) in Epichloë festucae induces symbiotic defects and intrahyphal hyphae formation. Mol Plant Pathol 19:1414–1426. https://doi.org/10.1111/mpp.12624

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, Von Maltzahn G, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria flowering into progeny seeds. Front Microbiol 8:11. https://doi.org/10.3389/fmicb.2017.00011

    Article  PubMed  PubMed Central  Google Scholar 

  83. Moldes-Anaya A, Rundberget T, Fæste CK, Eriksen GS, Bernhoft A (2012) Neurotoxicity of Penicillium crustosum secondary metabolites: tremorgenic activity of orally administered penitrem A and thomitrem A and E in mice. Toxicon 60:1428–1435. https://doi.org/10.1016/j.toxicon.2012.10.007

    CAS  Article  PubMed  Google Scholar 

  84. Monnet F, Vaillant N, Hitmi A, Coudret A, Sallanon H (2001) Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiol Plant 113:557–563. https://doi.org/10.1034/j.1399-3054.2001.1130415.x

    CAS  Article  Google Scholar 

  85. Moon CD, Miles CO, Järlfors U, Schardl CL (2002) The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 94:694–711. https://doi.org/10.1080/15572536.2003.11833197

    CAS  Article  PubMed  Google Scholar 

  86. Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65. https://doi.org/10.3389/fmicb.2013.00065

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nagabhyru P, Dinkins RD, Schardl CL (2019) Transcriptomics of Epichloë-grass symbioses in host vegetative and reproductive stages. Mol Plant Microbe Interact 32:194–207. https://doi.org/10.1094/MPMI-10-17-0251-R

    CAS  Article  PubMed  Google Scholar 

  88. Nakazawa J, Yajima J, Usui T et al (2003) A novel action of terpendole E on the motor activity of mitotic Kinesin Eg5. Chem Biol 10:131–137. https://doi.org/10.1016/s1074-5521(03)00020-6

    CAS  Article  PubMed  Google Scholar 

  89. Nicholson MJ, Eaton CJ, Stärkel C, Tapper BA, Cox MP, Scott B (2015) Molecular cloning and functional analysis of gene clusters for the biosynthesis of indole-diterpenes in Penicillium crustosum and P. janthinellum. Toxins (Basel) 7:2701–2722. https://doi.org/10.3390/toxins7082701

    CAS  Article  Google Scholar 

  90. Nicholson MJ, Koulman A, Monahan BJ, Pritchard BL, Payne GA, Scott B (2009) Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function. Appl Environ Microbiol 75:7469–7481. https://doi.org/10.1128/aem.02146-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. O'Hanlon KA, Gallagher L, Schrettl M, Jöchl C, Kavanagh K, Larsen TO, Doyle S (2012) Nonribosomal peptide synthetase genes pesL and pes1 are essential for Fumigaclavine C production in Aspergillus fumigatus. Appl Environ Microbiol 78:3166–3176. https://doi.org/10.1128/aem.07249-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Ortel I, Keller U (2009) Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. J Biol Chem 284:6650–6660. https://doi.org/10.1074/jbc.m807168200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Pan J, Bhardwaj M, Nagabhyru P, Grossman RB, Schardl CL (2014a) Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota. PLoS ONE 9:115590. https://doi.org/10.1371/journal.pone.0115590

    CAS  Article  Google Scholar 

  94. Pan J, Bhardwaj M, Faulkner JR, Nagabhyru P, Charlton ND, Higashi RM, Miller AF, Young CA, Grossman RB, Schardl CL (2014b) Ether bridge formation in loline alkaloid biosynthesis. Phytochemistry 98:60–68. https://doi.org/10.1016/j.phytochem.2013.11.015

    CAS  Article  PubMed  Google Scholar 

  95. Pan J, Bhardwaj M, Zhang B, Chang WC, Schardl CL, Krebs C, Grossman RB, Bollinger JM Jr (2018) Installation of the ether bridge of lolines by the Iron- and 2-oxoglutarate-dependent oxygenase, LolO: Regio- and stereochemistry of sequential hydroxylation and oxacyclization reactions. Biochemistry 57:2074–2083. https://doi.org/10.1021/acs.biochem.8b00157

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Panaccione DG, Arnold SL (2017) Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis. Sci Rep 7:8930. https://doi.org/10.1038/s41598-017-09107-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Panaccione DG, Johnson RD, Wang J, Young CA, Damrongkool P, Scott B, Schardl CL (2001) Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci USA 98:12820–12825. https://doi.org/10.1073/pnas.221198698

    CAS  Article  PubMed  Google Scholar 

  98. Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5–23. https://doi.org/10.1038/cmi.2014.89

    CAS  Article  PubMed  Google Scholar 

  99. Pańka D, Piesik D, Jeske M, Baturo-Cieśniewska A (2013) Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. J Plant Physiol 170(11):1010–1019. https://doi.org/10.1016/j.jplph.2013.02.009

    CAS  Article  PubMed  Google Scholar 

  100. Patchett B, Gooneratne R, Chapman B, Fletcher B (2011) Effects of loline-producing endophyte-infected meadow fescue ecotypes on New Zealand grass grub (Costelytra zealandica). N Z J Agric Res 54:303–313. https://doi.org/10.1080/00288233.2011.608686

    CAS  Article  Google Scholar 

  101. Philippe G (2016) Lolitrem B and indole diterpene alkaloids produced by endophytic fungi of the genus Epichloë and their toxic effects in livestock. Toxins (Basel) 8(2):47. https://doi.org/10.3390/toxins8020047

    CAS  Article  Google Scholar 

  102. Pimentel MR, Molina G, Dionísio AP, Marósticajr MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int https://doi.org/10.4061/2011/576286.

    Article  PubMed  Google Scholar 

  103. Pirlo SD, Johnson RD, Voisey CR, Koulman A, Bryan GT, (2007) Heterologous synthesis of the fungal alkaloid peramine. In Proceeding of the 6th International Symposium Fungal Endophytes of Grasses. NZ Grassl. Assoc. Christchurch, NZ (p. 483).

  104. Poling SM, Wicklow DT, Rogers KD, Gloer JB (2008) Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxy dihydro resorcylides. J Agr Food Chem 56:3006–3009. https://doi.org/10.1021/jf073274f

    CAS  Article  Google Scholar 

  105. Purev E, Kondo T, Takemoto D, Niones JT, Ojika M (2020) Identification of ε-Poly-L-lysine as an antimicrobial product from an Epichloë endophyte and isolation of fungal ε-PL synthetase gene. Molecules 25(5):1032. https://doi.org/10.3390/molecules25051032

    CAS  Article  PubMed Central  Google Scholar 

  106. Rasmussen S, Parsons AJ, Bassett S et al (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173(4):787–797. https://doi.org/10.1111/j.1469-8137.2006.01960.x

    CAS  Article  PubMed  Google Scholar 

  107. Reddy P, Guthridge K, Vassiliadis S, Hemsworth J, Hettiarachchige I, Spangenberg G, Rochfort S (2019a) Tremorgenic mycotoxins: structure diversity and biological activity. Toxins (Basel). 11:E302. https://doi.org/10.3390/toxins11050302

    CAS  Article  PubMed  Google Scholar 

  108. Reddy P, Rochfort S, Read E et al (2019b) Tremorgenic effects and functional metabolomics analysis of lolitrem B and its biosynthetic intermediates. Sci Rep 9(1):9364. https://doi.org/10.1038/s41598-019-45170-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Reed KFM, Mace WJ, Walker LV, Fletcher LR (2014) Endophyte metabolites associated with perennial ryegrass toxicosis. Anim Prod Sci 56:895–907

    Article  Google Scholar 

  110. Rigbers O, Li SM (2008) Ergot alkaloid biosynthesis in Aspergillus fumigatus. Overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 283:26859–26868. https://doi.org/10.1074/jbc.m804979200

    CAS  Article  PubMed  Google Scholar 

  111. Robinson SL, Panaccione DG (2014) Heterologous expression of lysergic acid and novel ergot alkaloids in Aspergillus fumigatus. Appl Environ Microbiol 80:6465–6472. https://doi.org/10.1128/aem.02137-14

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rozpądek P, Wężowicz K, Nosek M, Ważny R, Tokarz K, Lembicz M, Miszalski Z, Turnau K (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta 242:1025–1035. https://doi.org/10.1007/s00425-015-2337-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Rundberget T, Wilkins AL (2002) Thomitrems A and E, two indole-alkaloid isoprenoids from Penicillium crustosum Thom. Phytochemistry 61:979–985. https://doi.org/10.1016/s0031-9422(02)00369-2

    CAS  Article  PubMed  Google Scholar 

  114. Saikia S, Parker EJ, Koulman A, Scott B (2006) Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline. Febs Lett 580:1625–1630. https://doi.org/10.1016/j.febslet.2006.02.008

    CAS  Article  PubMed  Google Scholar 

  115. Saikia S, Takemoto D, Tapper BA, Lane GA, Fraser K, Scott B (2012) Functional analysis of an indole-diterpene gene cluster for lolitrem B biosynthesis in the grass endosymbiont Epichloë festucae. Febs Lett 586:2563–2569. https://doi.org/10.1016/j.febslet.2012.06.035

    CAS  Article  PubMed  Google Scholar 

  116. Saikkonen K, Young CA, Helander M, Schardl CL (2016) Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Mol Biol 90:665–675. https://doi.org/10.1007/s11103-015-0399-6

    CAS  Article  PubMed  Google Scholar 

  117. Sallam AA, Ayoub NM, Foudah AI, Gissendanner CR, Meyer SA, El Sayed KA (2013) Indole diterpene alkaloids as novel inhibitors of the Wnt/β-catenin pathway inbreast cancer cells. Eur J Med Chem 70:594–606. https://doi.org/10.1016/j.ejmech.2013.09.045

    CAS  Article  PubMed  Google Scholar 

  118. Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873. https://doi.org/10.1046/j.1365-294x.2003.01965.x

    CAS  Article  PubMed  Google Scholar 

  119. Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ (2013a) The Epichloë: Alkaloid diversity and roles in symbiosis with grasses. Curr Opin Plant Biol 16:480–488. https://doi.org/10.1016/j.pbi.2013.06.012

    CAS  Article  PubMed  Google Scholar 

  120. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340. https://doi.org/10.1146/annurev.arplant.55.031903.141735

    CAS  Article  PubMed  Google Scholar 

  121. Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids biology and molecular biology. Alkaloids Chem Biol 63:45–86. https://doi.org/10.1016/s1099-4831(06)63002-2

    CAS  Article  PubMed  Google Scholar 

  122. Schardl CL, Young CA, Pan J, Florea S, Takach JE, Panaccione DG, Farman ML, Webb JS, Jaromczyk J, Charlton ND, Nagabhyru P, Chen L, Shi C, Leuchtmann A (2013b) Currencies of mutualisms: sources of alkaloid genes in vertically transmitted Epichloae. Toxins (Basel) 5:1064–1088. https://doi.org/10.3390/toxins5061064

    CAS  Article  Google Scholar 

  123. Schardl CL, Young CA, Hesse U et al (2013c) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9(2):e1003323. https://doi.org/10.1371/journal.pgen.1003323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Schläger S, Dräger B (2016) Exploiting plant alkaloids. Curr Opin Biotechnol 37:155–164. https://doi.org/10.1016/j.copbio.2015.12.003

    CAS  Article  PubMed  Google Scholar 

  125. Schirrmann MK, Zoller S, Croll D, Stukenbrock EH, Leuchtmann A, Fior S (2018) Genome wide signatures of selection in Epichloë reveal candidate genes for host specialization. Mol Ecol 27:3070–3086. https://doi.org/10.1111/mec.14585

    CAS  Article  PubMed  Google Scholar 

  126. Schmid J, Day R, Zhang N, Dupont PY, Cox MP, Schardl CL, Minards N, Truglio M, Moore N, Harris DR, Zhou Y (2017) Host tissue environment directs activities of an Epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Mol Plant Microbe Interact 30:138–149. https://doi.org/10.1094/mpmi-10-16-0215-r

    CAS  Article  PubMed  Google Scholar 

  127. Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Basel, pp 1–13

    Google Scholar 

  128. Scott B, Green K, Berry D (2018) The fine balance between mutualism and antagonism in the Epichloë festucae-grass symbiotic interaction. Curr Opin Plant Biol 44:32–38. https://doi.org/10.1016/j.pbi.2018.01.010

    Article  PubMed  Google Scholar 

  129. Scott B, Young CA, Tapper BA, Wrenn RE, Foster SJ, Moon CD, Schardl CL (2007) Peramine and indole diterpene biosynthetic capability of Epichloë endophytes as predicted by perA and ltm gene analysis. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses. Grassland Research and Practice Series No. 13. Popay AJ and Thom ER (eds.). New Zealand Grassland Association Publication.

  130. Shiba T, Sugawara K (2009) Fungal loline alkaloids in grass–endophyte associations confer resistance to the rice leaf bug Trigonotylus caelestialium. Entomol Exp Appl 130:55–62. https://doi.org/10.1111/j.1570-7458.2008.00791.x

    Article  Google Scholar 

  131. Shoji JY, Charlton ND, Yi M, Young CA, Craven KD (2015) Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes. PLoS ONE 10(4):e0121875. https://doi.org/10.1371/journal.pone.0121875

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Song M, Li X, Saikkonen K, Li C, Nan Z (2015a) An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecol 13:44–52. https://doi.org/10.1016/j.funeco.2014.07.004

    Article  Google Scholar 

  133. Song M, Chai Q, Li X et al (2015b) An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387:153–165. https://doi.org/10.1007/s11104-014-2289-0

    CAS  Article  Google Scholar 

  134. Spiering MJ, Faulkner JR, Zhang DX, Machado C, Grossman RB, Schardl CL (2008) Role of the LolP cytochrome P450 monooxygenase in loline alkaloid biosynthesis. Fungal Genet Biol 45:1307–1314. https://doi.org/10.1016/j.fgb.2008.07.001

    CAS  Article  PubMed  Google Scholar 

  135. Spiering MJ, Lane GA, Christensen MJ, Schmid J (2005a) Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 66:195–202. https://doi.org/10.1016/j.phytochem.2004.11.021

    CAS  Article  PubMed  Google Scholar 

  136. Spiering MJ, Moon CD, Wilkinson HH, Schardl CL (2005b) Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 169:1403–1414. https://doi.org/10.1534/genetics.104.035972

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Sullivan TT, Rodstrom J, Vandop J, Librizzi J, Graham C, Schardl CL, Bultman TL (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition. New Phytol 176:673–679. https://doi.org/10.1111/j.1469-8137.2007.02201.x

    CAS  Article  PubMed  Google Scholar 

  138. Tagami K, Minami A, Fujii R, Liu C, Tanaka M, Gomi K, Dairi T, Oikawa H (2014) Rapid reconstitution of biosynthetic machinery for fungal metabolites in Aspergillus oryzae: total biosynthesis of aflatrem. ChemBioChem 15:2076–2080. https://doi.org/10.1002/cbic.201402195

    CAS  Article  PubMed  Google Scholar 

  139. Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, Sumimoto H, Scott B (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci USA 108:2861–2866. https://doi.org/10.1073/pnas.1017309108

    Article  PubMed  Google Scholar 

  140. Takemoto D, Tanaka A, Scott B (2006) A p67(Phox)-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18:2807–2821. https://doi.org/10.1105/tpc.106.046169

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076. https://doi.org/10.1016/j.fgb.2007.04.011

    CAS  Article  PubMed  Google Scholar 

  142. Tanaka A, Cartwright GM, Saikia S, Kayano Y, Takemoto D, Kato M, Tsuge T, Scott B (2013) ProA, a transcriptional regulator of fungal fruiting body development, regulates leaf hyphal network development in the Epichloë festucae-Lolium perenne symbiosis. Mol Microbiol 90:551–568. https://doi.org/10.1111/mmi.12385

    CAS  Article  PubMed  Google Scholar 

  143. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic association. Plant Cell 18:1052–1066. https://doi.org/10.1105/tpc.105.039263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 68:1165–1178. https://doi.org/10.1111/j.1365-2958.2008.06217.x

    CAS  Article  PubMed  Google Scholar 

  145. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050. https://doi.org/10.1111/j.1365-2958.2005.04747.x

    CAS  Article  PubMed  Google Scholar 

  146. Tian Z, Wang R, Ambrose KV, Clarke BB, Belanger FC (2017) The Epichloë festucae antifungal protein has activity against the plant pathogen Sclerotinia homoeocarpa, the causal agent of dollar spot disease. Sci Rep 7(1):5643. https://doi.org/10.1038/s41598-017-06068-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. Tomoda H, Tabata N, Yang DJ, Takayanagi H, Omura S (1995) Terpendoles, novel ACAT inhibitors produced by Albophoma yamanashiensis. III. Production, isolation and structure elucidation of new components. J Antibiot 48:793–804. https://doi.org/10.7164/antibiotics.48.793

    CAS  Article  PubMed  Google Scholar 

  148. Trotta RJ, Harmon DL, Klotz JL (2018) Interaction of ergovaline with serotonin receptor 5-HT2A in bovine ruminal and mesenteric vasculature. J Anim Sci 96:4912–4922. https://doi.org/10.1093/jas/sky346

    Article  PubMed  PubMed Central  Google Scholar 

  149. Uhlig S, Botha CJ, Vrålstad T, Rolén E, Miles CO (2009) Indole-diterpenes and ergot alkaloids in Cynodon dactylon (Bermuda grass) infected with Claviceps cynodontis from an outbreak of tremors in cattle. J Agr Food Chem 57:11112–11119. https://doi.org/10.1021/jf902208w

    CAS  Article  Google Scholar 

  150. Unsöld IA, Li SM (2005) Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499–1505. https://doi.org/10.1099/mic.0.27759-0

    CAS  Article  PubMed  Google Scholar 

  151. Unsold IA, Li SM (2006) Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification, and characterization of fumigaclavine C synthase FGAPT1. ChemBioChem 7:158–164. https://doi.org/10.1002/cbic.200500318

    CAS  Article  PubMed  Google Scholar 

  152. Venugopalan A, Srivastava S (2015) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 33:873–887. https://doi.org/10.1016/j.biotechadv.2015.07.004

    Article  PubMed  Google Scholar 

  153. Vikuk V, Young CA, Lee ST et al (2019) Infection rates and alkaloid patterns of different grass species with systemic epichloë endophytes. Appl Environ Microbiol 85(17):e00465–e519. https://doi.org/10.1128/AEM.00465-19

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Voisey CR, Christensen MT, Johnson LJ, Forester NT, Gagic M, Bryan GT, Simpson WR, Fleetwood DJ, Card SD, Koolaard JP, Maclean PH, Johnson RD (2016) cAMP signaling regulates synchronised growth of symbiotic Epichloë fungi with the host grass Lolium perenne. Front Plant Sci 7:1546. https://doi.org/10.3389/fpls.2016.01546

    Article  PubMed  PubMed Central  Google Scholar 

  155. Wallwey C, Matuschek M, Li SM (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 192:127–134. https://doi.org/10.1007/s00203-009-0536-1

    CAS  Article  PubMed  Google Scholar 

  156. Wang J, Machado C, Panaccione DG, Tsai HH, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198. https://doi.org/10.1016/j.fgb.2003.10.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. Winter DJ, Ganley ARD, Young CA et al (2018) Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae. PLoS Genet 14(10):e1007467. https://doi.org/10.1371/journal.pgen.1007467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. Xia C, Li N, Zhang X, Feng Y, Christensen MJ, Nan Z (2016) An Epichloë endophyte improves photosynthetic ability and dry matter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions. Fungal Ecol 22:26–34. https://doi.org/10.1016/j.funeco.2016.04.002

    Article  Google Scholar 

  159. Xia C, Li N, Zhang Y, Li C, Zhang X, Nan Z (2018a) Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Dis 102:2061–2073. https://doi.org/10.1094/PDIS-05-18-0762-FE

    Article  PubMed  Google Scholar 

  160. Xia C, Christensen MJ, Zhang X, Nan Z (2018b) Effect of Epichloë gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit. Plant soil 424:555–571. https://doi.org/10.1007/s11104-018-3561-5

    CAS  Article  Google Scholar 

  161. Young C, Mcmillan L, Telfer E, Scott B (2001) Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol Microbiol 39:754–764. https://doi.org/10.1046/j.1365-2958.2001.02265.x

    CAS  Article  PubMed  Google Scholar 

  162. Young CA, Bryant MK, Christensen MJ, Tapper BA, Bryan GT, Scott B (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Genet Genomics 274:13–29. https://doi.org/10.1007/s00438-005-1130-0

    CAS  Article  PubMed  Google Scholar 

  163. Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693. https://doi.org/10.1016/j.fgb.2006.04.004

    CAS  Article  PubMed  Google Scholar 

  164. Young CA, Schardl CL, Panaccione DG, Florea S, Takach JE, Charlton ND, Moore N, Webb JS, Jaromczyk J (2015) Genetics, genomics and evolution of ergot alkaloid diversity. Toxins (Basel) 7:1273–1302. https://doi.org/10.3390/toxins7041273

    CAS  Article  Google Scholar 

  165. Young CA, Tapper BA, May K, Moon CD, Schardl CL, Scott B (2009) Indole-diterpene biosynthetic capability of Epichloë endophytes as predicted by ltm gene analysis. Appl Environ Microbiol 75:2200–2211. https://doi.org/10.1128/aem.00953-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. Zbib N, Repussard C, Tardieu D, Priymenko N, Domange C, Guerre P (2014) Ergovaline in tall fescue and its effect on health, milk quality, biochemical parameters, oxidative status, and drug metabolizing enzymes of lactating ewes. J Anim Sci 92:5112–5123. https://doi.org/10.2527/jas.2014-8106

    CAS  Article  PubMed  Google Scholar 

  167. Zhang DX, Stromberg AJ, Spiering MJ, Schardl CL (2009) Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures. Fungal Genet Biol 46:517–530. https://doi.org/10.1016/j.fgb.2009.03.010

    CAS  Article  PubMed  Google Scholar 

  168. Zhang S, Monahan BJ, Tkacz JS, Scott B (2004) Indole-diterpene gene cluster from Aspergillus flavus. Appl Environ Microbiol 70:6875–6883. https://doi.org/10.1128/aem.70.11.6875-6883.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. Zhang X, Nan Z, Li C, Gao K (2014) Cytotoxic effect of ergot alkaloids in Achnatherum inebrians infected by the Neotyphodium gansuense endophyte. J Agric Food Chem 62:7419–7422. https://doi.org/10.1021/jf502264j

    CAS  Article  PubMed  Google Scholar 

  170. Zhou JV, Li X, Zhao D, Deng-Wang MY, Dai CC (2016) Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea. Planta 244:699–712. https://doi.org/10.1007/s00425-016-2536-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help rendered by Dr. V. S. Pragadheesh, CSIR-Indian Institute of Chemical Biology, India, with ChemDraw. Authors have no conflict of interest to declare. The authors acknowledge the help of Chris Anthony, Professor, Southampton University, United Kingdom for the English check.

Author information

Affiliations

Authors

Contributions

RB, JH and SRK wrote the manuscript and RS revised it.

Corresponding author

Correspondence to S. Ramalingam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bharadwaj, R., Jagadeesan, H., Kumar, S.R. et al. Molecular mechanisms in grass-Epichloë interactions: towards endophyte driven farming to improve plant fitness and immunity. World J Microbiol Biotechnol 36, 92 (2020). https://doi.org/10.1007/s11274-020-02868-5

Download citation

Keywords

  • Epichloë endophytes
  • Plant–microbe interactions
  • Endophyte colonization
  • Gene clustering
  • Bio-protective alkaloids
  • Sustainable agriculture