Spent brewer’s yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications

Abstract

Development of new strategies to add-value to agro-industrial by-products are of environmental and economical importance. Innovative and low-cost sources of protein and bioactive peptides have been explored worldwide. Spent brewer’s yeast (SBY) is the second most relevant by-product from the brewing industry, and despite its nutritional (about 50% protein, dry weight) and technological potential, it is still underused or needs to be disposed of. SBY cells need to be disrupted to release intracellular and cell wall proteins. This procedure has been performed using autolysis, glass bead milling, enzymatic hydrolysis and ultrasound processing. Enzymatic treatment is usually performed without prior purification and is a challenging process, which involves multiple factors, but has been successfully used as a strategy to add value to agro-industrial by-products. Scope and approach: in this review, we particularly focused on enzymatic hydrolysis as a strategy to promote SBY valorisation, illustrating the state-of-the-art processes used to produce protein extracts from this material as well as exploring fundamental concepts related to the particularities of yeast cell disruption and protein hydrolysis. Furthermore, innovative applications of value-added yeast by-products in food, biotechnological and pharmaceutical industries are presented and discussed. Key findings and conclusions: the discovery of valuable compounds found in spent yeasts as well as the development of new processing methodologies have been widening the possibilities of reuse and transformation of SBY as an ingredient and innovative matrix. Once released, yeast proteins and peptides may be applied as an innovative non-animal protein source or a functional and bioactive ingredient.

This is a preview of subscription content, log in to check access.

Fig. 1

Adapted from Mussatto (2009)

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abou-Zeid A, Jalaluddin AK, Abulnaja KO (1995) On methods for reduction of nucleic acids content in a single-cell protein from gas oil. Bioresour Technol 52(1):21–24. https://doi.org/10.1016/0960-8524(95)99782-Q

    CAS  Article  Google Scholar 

  2. Alu’datt MH, Ereifej K, Abu-Zaiton A, Alrababah M, Almajwal A, Rababah T, Yang W (2012) Anti-oxidant, anti-diabetic, and anti-hypertensive effects of extracted phenolics and hydrolyzed peptides from barley protein fractions. Int J Food Prop 15(4):781–795. https://doi.org/10.1080/10942912.2010.503357

    CAS  Article  Google Scholar 

  3. Ambrosi A, Cardozo NSM, Tessaro IC (2014) Membrane separation processes for the beer industry: a review and state of the art. Food Bioprocess Technol 7(4):921–936. https://doi.org/10.1007/s11947-014-1275-0

    Article  Google Scholar 

  4. Amorim M, Pereira JO, Gomes D, Pereira CD, Pinheiro H, Pintado M (2016a) Nutritional ingredients from spent brewer’s yeast obtained by hydrolysis and selective membrane filtration integrated in a pilot process. J Food Eng 185:42–47. https://doi.org/10.1016/j.jfoodeng.2016.03.032

    CAS  Article  Google Scholar 

  5. Amorim M, Marques C, Pereira J, Guardão L, Martins M, Osório H, Moura D, Calhau C, Pinheiro H, Pintado M (2019a) Antihypertensive effect of spent brewer yeast peptide. Process Biochem 76:213–218. https://doi.org/10.1016/j.procbio.2018.10.004

    CAS  Article  Google Scholar 

  6. Amorim M, Pinheiro H, Pintado M (2019b) Valorization of spent brewer’s yeast: optimization of hydrolysis process towards the generation of stable ACE-inhibitory peptides. LWT 111:77–84. https://doi.org/10.1016/j.lwt.2019.05.011

    CAS  Article  Google Scholar 

  7. Amorim MM, Pereira JO, Monteiro KM, Ruiz AL, Carvalho JE, Pinheiro H, Pintado M (2016b) Antiulcer and antiproliferative properties of spent brewer’s yeast peptide extracts for incorporation into foods. Food Funct 7:2331–2337. https://doi.org/10.1039/C6FO00030D

    CAS  Article  PubMed  Google Scholar 

  8. de Araújo VBS, de Melo ANF, Costa AG, Castro-Gomez RH, Madruga MS, D’Souza EL, Magnani M (2014) Followed extraction of \(\beta\)-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innov Food Sci Emerg Technol 23:164–170. https://doi.org/10.1016/j.ifset.2013.12.013

    CAS  Article  Google Scholar 

  9. Asenjo JA, Dunnill P (1981) The isolation of lytic enzymes from cytophaga and their application to the rupture of yeast cells. Biotechnol Bioeng 23(5):1045–1056. https://doi.org/10.1002/bit.260230512

    CAS  Article  Google Scholar 

  10. Barrette J, Champagne CP, Goulet J (1999) Development of bacterial contamination during production of yeast extracts. Appl Environ Microbiol 65(7):3261–3263. https://doi.org/10.3390/fermentation5020051

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Bertolo AP, Biz AP, Kempka AP, Rigo E, Cavalheiro D (2019) Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. J Food Sci Technol 56(8):3697–3706. https://doi.org/10.1007/s13197-019-03833-3

    CAS  Article  PubMed  Google Scholar 

  12. Błażejak S, Duszkiewicz-Reinhard W (2004) Yeast cell biomass as a potential source of magnesium bioplexes—a review. Pol J Food Nutr Sci 54(3):223–232

    Google Scholar 

  13. Bryant RWR, Cohen SD (2015) Characterization of hop acids in spent brewer’s yeast from craft and multinational sources. J Am Soc Brew Chem 73(2):159–164. https://doi.org/10.1094/ASBCJ-2015-0315-01

    CAS  Article  Google Scholar 

  14. Budroni M, Mannazzu I, Zara S, Saba S, Pais A, Zara G (2020) Composition and functional profiling of the microbiota in the casts of Eisenia fetida during vermicomposting of brewers’ spent grains. Biotechnol Rep 25:e00439. https://doi.org/10.1016/j.btre.2020.e00439

    Article  Google Scholar 

  15. Bzducha-Wróbel A, Błażejak S, Kawarska A, Stasiak-Różańska L, Gientka I, Majewska E (2014) Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for \(\beta\)-glucan isolation. Molecules 19(12):20941–20961. https://doi.org/10.3390/molecules191220941

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Caballero-Córdoba GM, Sgarbieri VC (2000) Nutritional and toxicological evaluation of yeast (Saccharomyces cerevisiae) biomass and a yeast protein concentrate. J Sci Food Agric 80(3):341–351. 10.1002/1097-0010(200002)80:3\(<\)341::AID-JSFA533\(>\)3.0.CO;2-M

  17. Caballero-Córdoba GM, Pacheco MT, Sgarbieri VC (1997) Composição química da biomassa de levedura integral (Saccharomyces sp.) e determinação do valor nutritivo da proteína em células íntegras ou rompidas mecanicamente. Food Sci Technol 17(2):102–106. https://doi.org/10.1590/S0101-20611997000200007

  18. Chae HJ, Joo H, In MJ (2001) Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour Technol 76(3):253–258. https://doi.org/10.1016/S0960-8524(00)00102-4

    CAS  Article  PubMed  Google Scholar 

  19. Chen KQ, Li J, Ma JF, Jiang M, Wei P, Liu ZM, Ying HJ (2011) Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Bioresour Technol 102(2):1704–1708. https://doi.org/10.1016/j.biortech.2010.08.011

    CAS  Article  PubMed  Google Scholar 

  20. Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res. https://doi.org/10.4137/IJTR.S2097

    Article  PubMed  PubMed Central  Google Scholar 

  21. Connolly A, Piggott CO, FitzGerald RJ (2014) In vitro \(\alpha\)-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers’ spent grain protein hydrolysates. Food Res Int 56:100–107. https://doi.org/10.1016/j.foodres.2013.12.021

    CAS  Article  Google Scholar 

  22. Connolly A, O’Keeffe MB, Piggott CO, Nongonierma AB, FitzGerald RJ (2015) Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers’ spent grain protein isolate. Food Chem 176:64–71. https://doi.org/10.1016/j.foodchem.2014.12.027

    CAS  Article  PubMed  Google Scholar 

  23. Cui C, Qian Y, Sun W, Zhao H (2016) Effects of high solid concentrations on the efficacy of enzymatic hydrolysis of yeast cells and the taste characteristics of the resulting hydrolysates. Int J Food Sci Technol 51(5):1298–1304. https://doi.org/10.1111/ijfs.13084

    CAS  Article  Google Scholar 

  24. de Castro RJS, Sato HH (2014) Functional properties and growth promotion of bifidobacteria and lactic acid bacteria strains by protein hydrolysates using a statistical mixture design. Food Biosci 7:19–30. https://doi.org/10.1016/j.fbio.2014.05.004

    CAS  Article  Google Scholar 

  25. de Castro RJS, Sato HH (2015) Biologically active peptides: processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int 74:185–198. https://doi.org/10.1016/j.foodres.2015.05.013

    CAS  Article  PubMed  Google Scholar 

  26. de la Hoz L, Ponezi AN, Milani RF, da Silva VSN, de Souza AS, Bertoldo-Pacheco MT (2014) Iron-binding properties of sugar cane yeast peptides. Food Chem 142:166–169. https://doi.org/10.1016/j.foodchem.2013.06.133

    CAS  Article  PubMed  Google Scholar 

  27. de Mathias TRS, Alexandre VMF, Cammarota MC, Mello PPM, Sérvulo EFC (2015) Characterization and determination of brewer’s solid wastes composition. J Inst Brew 121(3):400–404. https://doi.org/10.1002/jib.229

    CAS  Article  Google Scholar 

  28. de Melo ANF, de Souza EL, de Araujo VBS, Magnani M (2015) Stability, nutritional and sensory characteristics of French salad dressing made with mannoprotein from spent brewer’s yeast. LWT 62(1, Part 2):771–774. https://doi.org/10.1016/j.lwt.2014.06.050

    CAS  Article  Google Scholar 

  29. Diana M, Quílez J, Rafecas M (2014) Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods 10:407–420. https://doi.org/10.1016/j.jff.2014.07.004

    CAS  Article  Google Scholar 

  30. Enache-Angoulvant A, Hennequin C (2005) Invasive Saccharomyces infection: a comprehensive review. Clin Infect Dis 41(11):1559–1568. https://doi.org/10.1086/497832

    Article  PubMed  Google Scholar 

  31. Esteve C, Marina ML, García MC (2015) Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem 167:272–280. https://doi.org/10.1016/j.foodchem.2014.06.090

    CAS  Article  PubMed  Google Scholar 

  32. Fernandez VE, Palazolo GG, Bosisio NA, Martínez LM, Wagner JR (2012) Rheological properties and stability of low-in-fat dressings prepared with high-pressure homogenized yeast. J Food Eng 111(1):57–65. https://doi.org/10.1016/j.jfoodeng.2012.01.029

    Article  Google Scholar 

  33. Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG (2010) Brewer’s saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci Technol 21(2):77–84. https://doi.org/10.1016/j.tifs.2009.10.008

    CAS  Article  Google Scholar 

  34. Fukal L, Káš J, Rauch P (1986) Properties of yeast proteinases. J Inst Brew 92(4):357–359. https://doi.org/10.1002/j.2050-0416.1986.tb04423.x

    CAS  Article  Google Scholar 

  35. Garcia-Mora P, Frias J, Nas EP, Zieliński H, Giménez-Bastida JA, Wiczkowski W, Zielińska D, Martínez-Villaluenga C (2015) Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. J Funct Foods 18:319–332. https://doi.org/10.1016/j.jff.2015.07.010

    CAS  Article  Google Scholar 

  36. Guillemin GJ, Brew BJ (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep 7(4):199–206. https://doi.org/10.1179/135100002125000550

    CAS  Article  PubMed  Google Scholar 

  37. Halász A, Lásztity R (1991a) Introduction. In: Halász A, Lásztity R (eds) Use of yeast biomass in food production. CRC Press, Boca Raton, pp 1–10

    Google Scholar 

  38. Halász A, Lásztity R (1991b) Chemical composition and biochemistry of yeast biomass. In: Halász A, Lásztity R (eds) Use of yeast biomass in food production. CRC Press, Boca Raton, pp 23–41

    Google Scholar 

  39. Harrison STL (2011) Cell disruption. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic, Burlington, pp 619–640. https://doi.org/10.1016/B978-0-08-088504-9.00127-6

  40. Huang K, Gao JY, Ma S, Lu JJ (2012) Optimising separation process of protein and polysaccharide from spent brewer’s yeast by ultrafiltration. Int J Food Sci Technol 47(6):1259–1264. https://doi.org/10.1111/j.1365-2621.2012.02967.x

    CAS  Article  Google Scholar 

  41. Huige NJ (2006) Chapter 18: brewery by-products and effluents. In: Stewart GG, Priest FG (eds) Handbook of brewing, 2nd edn. CRC Press, Boca Raton, pp 656–716

    Google Scholar 

  42. In MJ, Kim DC, Chae HJ (2005) Downstream process for the production of yeast extract using brewer’s yeast cells. Biotechnol Bioprocess Eng 10(1):85. https://doi.org/10.1007/BF02931188

    CAS  Article  Google Scholar 

  43. Jach ME, Serefko A, Sajnaga E, Kozak E, Poleszak E, Malm A (2015) Dietary supplements based on the yeast biomass. Curr Top Nutraceutical Res 13(2):83–88. https://doi.org/10.1590/S1415-52732000000300005

    Article  Google Scholar 

  44. Jacob FF, Hutzler M, Methner F-J (2019a) Comparison of various industrially applicable disruption methods to produce yeast extract using spent yeast from top-fermenting beer production: influence on amino acid and protein content. Eur Food Res Technol 245:95–109. https://doi.org/10.1007/s00217-018-3143-z

    CAS  Article  Google Scholar 

  45. Jacob FF, Striegel L, Rychlik M, Hutzler M, Methner F-J (2019b) Spent yeast from brewing processes: a biodiverse starting material for yeast extract production. Fermentation 5(2):51 (special Issue “Food Wastes: Feedstock for Value-Added Products”). https://doi.org/10.3390/fermentation5020051

  46. Jacob FF, Striegel L, Rychlik M, Hutzler M, Methner F-J (2019c) Yeast extract production using spent yeast from beer manufacture: influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance. Eur Food Res Technol 245:1169–1182. https://doi.org/10.1007/s00217-019-03237-9

    CAS  Article  Google Scholar 

  47. Jung EY, Lee HS, Chang UJ, Bae SH, Kwon KH, Suh HJ (2010) Acute and subacute toxicity of yeast hydrolysate from Saccharomyces cerevisiae. Food Chem Toxicol 48(6):1677–1681. https://doi.org/10.1016/j.fct.2010.03.044

    CAS  Article  PubMed  Google Scholar 

  48. Jung EY, Lee HS, Choi JW, Ra KS, Kim MR, Suh HJ (2011) Glucose tolerance and antioxidant activity of spent brewer’s yeast hydrolysate with a high content of cyclo-his-pro (CHP). J Food Sci 76(2):C272–C278. https://doi.org/10.1111/j.1750-3841.2010.01997.x

    CAS  Article  PubMed  Google Scholar 

  49. Jung EY, Hong YH, Kim JH, Park Y, Bae SH, Chang UJ, Suh HJ (2012) Effects of yeast hydrolysate on hepatic lipid metabolism in high-fat-diet-induced obese mice: yeast hydrolysate suppresses body fat accumulation by attenuating fatty acid synthesis. Ann Nutr Metab 61:89–94. https://doi.org/10.1159/000338441

    CAS  Article  PubMed  Google Scholar 

  50. Jung EY, Cho MK, Hong YH, Kim JH, Park Y, Chang UJ, Suh HJ (2014) Yeast hydrolysate can reduce body weight and abdominal fat accumulation in obese adults. Nutrition 30(1):25–32. https://doi.org/10.1016/j.nut.2013.02.009

    CAS  Article  PubMed  Google Scholar 

  51. Kalayu G (2019) Serial re-pitching: its effect on yeast physiology, fermentation performance, and product quality. Ann Microbiol 69:787–796. https://doi.org/10.1007/s13213-019-01493-4

    Article  Google Scholar 

  52. Kanauchi O, Igarashi K, Ogata R, Mitsuyama K, Andoh A (2005) A yeast extract high in bioactive peptides has a blood-pressure lowering effect in hypertensive model. Curr Med Chem 12(26):3085–3090. https://doi.org/10.2174/092986705774933461

    CAS  Article  PubMed  Google Scholar 

  53. Kim JH, Jung EY, Hong YH, Bae SH, Kim JM, Noh DO, Nozaki T, Inoue T, Suh HJ (2012) Short communication: pet foods with yeast hydrolysate can reduce body weight and increase girth in beagle dogs. Can J Anim Sci 92(2):207–210. https://doi.org/10.4141/cjas2011-123

    CAS  Article  Google Scholar 

  54. Kim JM, Lee SW, Kim KM, Chang UJ, Song JC, Suh HJ (2003) Anti-stress effect and functionality of yeast hydrolysate SCP-20. Eur Food Res Technol 217(2):168–172. https://doi.org/10.1007/s00217-003-0723-2

    CAS  Article  Google Scholar 

  55. Kim JM, Kim S, Jung E, Bae SH, Suh HJ (2009) Yeast hydrolysate induces longitudinal bone growth and growth hormone release in rats. Phytother Res 23(5):731–736. https://doi.org/10.1002/ptr.2720

    CAS  Article  PubMed  Google Scholar 

  56. Kim KM, Chang UJ, Kang DH, Kim JM, Choi YM, Suh HJ (2004) Yeast hydrolysate reduces body fat of dietary obese rats. Phytother Res 18(11):950–953. https://doi.org/10.1002/ptr.1582

    CAS  Article  PubMed  Google Scholar 

  57. Kollar R, Sturdik E, Sajbidor J (1992) Complete fractionation of Saccharomyces cerevisiae biomass. Urol Nurs 6(3):225–237. https://doi.org/10.1080/08905439209549836

    CAS  Article  Google Scholar 

  58. Kumar RS, Chandrasekaran M (2016) Beverages. In: Chandrasekaran M (ed) Valorization of food processing by-products. CRC Press, Boca Raton, pp 589–614

    Google Scholar 

  59. Lee H, Jung E, Bae SH, Kwon KH, Kim J, Suh HJ (2011) Stimulation of osteoblastic differentiation and mineralization in MC3T3 E1 cells by yeast hydrolysate. Phytother Res 25(5):716–723. https://doi.org/10.1002/ptr.3328

    CAS  Article  PubMed  Google Scholar 

  60. Lee HS, Jung EY, Suh HJ (2009) Chemical composition and anti-stress effects of yeast hydrolysate. J Med Food 12(6):1281–1285. https://doi.org/10.1089/jmf.2009.0098

    CAS  Article  PubMed  Google Scholar 

  61. León-González ME, Gómez-Mejía E, Rosales-Conrado N, Madrid-Albarrán Y (2018) Residual brewing yeast as a source of polyphenols: extraction, identification and quantification by chromatographic and chemometric tools. Food Chem 267:246–254. https://doi.org/10.1016/j.foodchem.2017.06.141

    CAS  Article  PubMed  Google Scholar 

  62. Lewis MJ, Young TW (2001) Brewing, 2nd edn. Springer. https://doi.org/10.1007/978-1-4615-0729-1

  63. Li-Chan EC (2015) Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci 1:28–37. https://doi.org/10.1016/j.cofs.2014.09.005

    Article  Google Scholar 

  64. Liu D, Zeng XA, Sun DW, Han Z (2013) Disruption and protein release by ultrasonication of yeast cells. Innov Food Sci Emerg Technol 18:132–137. https://doi.org/10.1016/j.ifset.2013.02.006

    CAS  Article  Google Scholar 

  65. Liu D, Ding L, Sun J, Boussetta N, Vorobiev E (2016) Yeast cell disruption strategies for recovery of intracellular bio-active compounds—a review. Innov Food Sci Emerg Technol 36:181–192. https://doi.org/10.1016/j.ifset.2016.06.017

    CAS  Article  Google Scholar 

  66. Lobo-Alfonso J, Price P, Jayme D (2010) Chapter 4: benefits and limitations of protein hydrolysates as components of serum-free media for animal cell culture applications. In: Pasupuleti VK, Demain AL (eds) Protein hydrolysates in biotechnology, 1st edn. Springer, New York, pp 55–78. https://doi.org/10.1007/978-1-4020-6674-0

  67. Lombardo S, Maskos U (2015) Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology 96:255–262. https://doi.org/10.1016/j.neuropharm.2014.11.018

    CAS  Article  PubMed  Google Scholar 

  68. Marson GV, de Machado MTC, de Castro RJS, Hubinger MD (2019) Sequential hydrolysis of spent brewer’s yeast improved its physico-chemical characteristics and antioxidant properties: a strategy to transform waste into added-value biomolecules. Process Biochem 84:91–102. https://doi.org/10.1016/j.procbio.2019.06.018

    CAS  Article  Google Scholar 

  69. Marson GV, de Castro RJS, de Machado MTC, Zandonadi FDS, de Barros HDFQ, Maróstica Júnior MR, Sussulini A, Hubinger MD (2020) Proteolytic enzymes positively modulated the physicochemical and antioxidant properties of spent yeast protein hydrolysates. Process Biochem 91:34–45. https://doi.org/10.1016/j.procbio.2019.11.030

    CAS  Article  Google Scholar 

  70. Martínez-Alvarez O, Guimas L, Delannoy C, Fouchereau-Peron M (2008) Use of a commercial protease and yeasts to obtain CGRP-like molecules from saithe protein. J Agric Food Chem 56(17):7853–7859. https://doi.org/10.1021/jf801393r

    CAS  Article  PubMed  Google Scholar 

  71. Masuda K, Feng Guo X, Uryu N, Hagiwara T, Watabe S (2008) Isolation of marine yeasts collected from the Pacific Ocean showing a high production of \(\gamma\)-aminobutyric acid. Biosci Biotechnol Biochem 72(12):3265–3272. https://doi.org/10.1271/bbb.80544

    CAS  Article  PubMed  Google Scholar 

  72. McCarthy AL, O’Callaghan YC, Connolly A, Piggott CO, FitzGerald RJ, O’Brien NM (2013) In vitro antioxidant and anti-inflammatory effects of brewers’ spent grain protein rich isolate and its associated hydrolysates. Food Res Int 50(1):205–212. https://doi.org/10.1016/j.foodres.2012.10.022

    CAS  Article  Google Scholar 

  73. McClean S, Beggs LB, Welch RW (2014) Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues. Food Chem 146:443–447. https://doi.org/10.1016/j.foodchem.2013.09.094

    CAS  Article  PubMed  Google Scholar 

  74. Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13(3):491–551. https://doi.org/10.1016/0734-9750(95)02007-P

    CAS  Article  PubMed  Google Scholar 

  75. Mirzaei M, Mirdamadi S, Ehsani MR, Aminlari M, Hosseini E (2015) Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. J Funct Foods 19:259–268. https://doi.org/10.1016/j.jff.2015.09.031

    CAS  Article  Google Scholar 

  76. Moyad MA, Robinson LE, Zawada ET, Kittelsrud J, Chen DG, Reeves SG, Weaver S (2010) Immunogenic yeast-based fermentate for cold/flu-like symptoms in nonvaccinated individuals. J Altern Complim Med 16(2):213–218. https://doi.org/10.1089/acm.2009.0310

    Article  Google Scholar 

  77. Mussatto SI (2009) Biotechnological potential of brewing industry by-products. In: Nigam PSN, Pandey A (eds) Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues, 1st edn. Springer, Dordrecht, pp 313–326. https://doi.org/10.1007/978-1-4020-9942-7_16

  78. Nagodawithana TW, Nelles L, Trivedi NB (2010) Chapter 11: protein hydrolysates as hypoallergenic, flavors and palatants for companion animals. In: Pasupuleti VK, Demain AL (eds) Protein hydrolysates in biotechnology, 1st edn. Springer, New York, pp 191–208. https://doi.org/10.1007/978-1-4020-6674-0

  79. Nand K (1987) Debittering of spent brewer’s yeast for food purposes. Food/Nahr 31(2):127–131. https://doi.org/10.1002/food.19870310208

    Article  Google Scholar 

  80. Nielsen PM, Olsen HS (2002) Enzymic modification of food protein. In: Whitehurst RJ, Law BA (eds) Enzymes in food technology. Sheffield Academic Press, Sheffield, pp 109–143

    Google Scholar 

  81. Ortiz-Chao PA, Jauregi P (2007) Enzymatic production of bioactive peptides from milk and whey proteins. In: Rastall R (ed) Novel enzyme technology for food applications, 1st edn. Woodhead Publishing, Cambridge, pp 160–182

    Google Scholar 

  82. Ortiz-Martinez M, Winkler R, García-Lara S (2014) Preventive and therapeutic potential of peptides from cereals against cancer. J Proteomics 111:165–183. https://doi.org/10.1016/j.jprot.2014.03.044

    CAS  Article  PubMed  Google Scholar 

  83. Øverland M, Skrede A (2017) Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. J Sci Food Agric 97(3):733–742. https://doi.org/10.1002/jsfa.8007

    CAS  Article  PubMed  Google Scholar 

  84. Pacheco MT, Caballero-Córdoba GM, Sgarbieri VC (1997) Composition and nutritive value of yeast biomass and yeast protein concentrates. J Nutr Sci Vitaminol 46(6):601–612. https://doi.org/10.3177/jnsv.43.601

    Article  Google Scholar 

  85. Pacheco MTB, Carraro F, Sgarbieri VC (1999) Study of calcium binding to different preparations of yeast (Saccharomyces cerevisiae) protein by using an ion selective electrode. Food Chem 66(2):249–252. https://doi.org/10.1016/S0308-8146(98)00252-0

    CAS  Article  Google Scholar 

  86. Pancrazio G, Cunha SC, de Pinho PG, Loureiro M, Meireles S, Ferreira IM, Pinho O (2016) Spent brewer’s yeast extract as an ingredient in cooked hams. Meat Sci 121:382–389. https://doi.org/10.1016/j.meatsci.2016.07.009

    CAS  Article  PubMed  Google Scholar 

  87. Paramera EI, Karathanos VT, Konteles SJ (2014) Chapter 23: yeast cells and yeast-based materials for microencapsulation. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R (eds) Microencapsulation in the food industry, 1st edn, Academic, San Diego, pp 267–281. https://doi.org/10.1016/B978-0-12-404568-2.00023-6

  88. Park JK, Lee JW, Jung JY (2003) Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells. Enzyme Microb Technol 33(4):371–378. https://doi.org/10.1016/S0141-0229(03)00133-9

    CAS  Article  Google Scholar 

  89. Park Y, Kim JH, Lee HS, Jung EY, Lee H, Noh DO, Suh HJ (2013) Thermal stability of yeast hydrolysate as a novel anti-obesity material. Food Chem 136(2):316–321. https://doi.org/10.1016/j.foodchem.2012.08.047

    CAS  Article  PubMed  Google Scholar 

  90. Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E (2015) Yeast biomass, an optimised product with myriad applications in the food industry. Trends Food Sci Technol 46(2, Part A):167–175. https://doi.org/10.1016/j.tifs.2015.10.008

    CAS  Article  Google Scholar 

  91. Phongthai S, D’Amico S, Schoenlechner R, Homthawornchoo W, Rawdkuen S (2018) Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem 240:156–164. https://doi.org/10.1016/j.foodchem.2017.07.080

    CAS  Article  PubMed  Google Scholar 

  92. Pinto M, Coelho E, Nunes A, ao TB, Coimbra MA (2015) Valuation of brewers spent yeast polysaccharides: A structural characterization approach. Carbohydr Polym 116(Supplement C):215 – 222, https://doi.org/10.1016/j.carbpol.2014.03.010

  93. Podpora B, Świderski F, Sadowska A, Rakowska R, Wasiakzys G (2016) Spent brewer’s yeast extracts as a new component of functional food. Czech J Food Sci 34(6):554–563 https://doi.org/10.17221/419/2015-CJFS

    CAS  Article  Google Scholar 

  94. Posteraro B, Quarant G, Posteraro P, Sanguinetti M (2018) Chapter 48: Saccharomyces cerevisiae. In: Liu D (ed) Handbook of foodborne diseases. CRC Press, Boca Raton, pp 509–520. https://doi.org/10.1201/b22030

  95. Qin F, Johansen AZ, Mussatto SI (2018) Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Ind Crop Prod 125:443–453. https://doi.org/10.1016/j.indcrop.2018.09.017

    CAS  Article  Google Scholar 

  96. Rajendran RMNR (2012) Enzymatic conversion of RNA from yeast extract to guanosine monophosphate (a flavoring agent). Master’s Thesis, Chalmers University of Technology, Göteborg

  97. Rakowska R, Sadowska A, Dybkowska E, Świderski F (2017) Spent yeast as natural source of functional food additives. Ann Natl Inst Hyg 68(2):115–121

    CAS  Google Scholar 

  98. Ravindran R, Sarangapani C, Jaiswal S, Lu P, Cullen P, Bourke P, Jaiswal AK (2019) Improving enzymatic hydrolysis of brewer spent grain with nonthermal plasma. Bioresour Technol 282:520–524. https://doi.org/10.1016/j.biortech.2019.03.071

    CAS  Article  PubMed  Google Scholar 

  99. Reed G, Nagodawithana TW (1991) Food and feed yeast. In: Yeast technology. Springer, Dordrecht, pp 413–440. https://doi.org/10.1007/978-94-011-9771-7

  100. Rizzo M, Ventrice D, Varone M, Sidari R, Caridi A (2006) HPLC determination of phenolics adsorbed on yeasts. J Pharm Biomed Anal 42(1):46–55. https://doi.org/10.1016/j.jpba.2006.02.058

    CAS  Article  PubMed  Google Scholar 

  101. Saba S, Zara G, Bianco A, Garau M, Bononi M, Deroma M, Pais A, Budroni M (2019) Comparative analysis of vermicompost quality produced from brewers’ spent grain and cow manure by the red earthworm Eisenia fetida. Bioresour Technol 293:122019. https://doi.org/10.1016/j.biortech.2019.122019

    CAS  Article  PubMed  Google Scholar 

  102. Sacakli P, Koksal BH, Ergun A, Ozsoy B (2013) Usage of brewer’s yeast (Saccharomyces cerevisiae) as a replacement of vitamin and trace mineral premix in broiler diets. Rev Med Vet 164(1):39–44

    CAS  Google Scholar 

  103. Shi G, Rao L, Xie Q, Li J, Li B, Xiong X (2010) Characterization of yeast cells as a microencapsulation wall material by Fourier-transform infrared spectroscopy. Vib Spectrosc 53(2):289–295. https://doi.org/10.1016/j.vibspec.2010.04.007

    CAS  Article  Google Scholar 

  104. Shotipruk A, Kittianong P, Suphantharika M, Muangnapoh C (2005) Application of rotary microfiltration in debittering process of spent brewer’s yeast. Bioresour Technol 96(17):1851–1859. https://doi.org/10.1016/j.biortech.2005.01.035

    CAS  Article  PubMed  Google Scholar 

  105. Shurson G (2018) Yeast and yeast derivatives in feed additives and ingredients: sources, characteristics, animal responses, and quantification methods. Anim Feed Sci Technol 235:60–76. https://doi.org/10.1016/j.anifeedsci.2017.11.010

    CAS  Article  Google Scholar 

  106. Stahmann KP (2019) Vitamins and vitamin-like compounds: microbial production. In: Schmidt TM (ed) Encyclopedia of microbiology, 4th edn, Academic, Oxford, pp 569–580. https://doi.org/10.1016/B978-0-12-809633-8.13017-1

  107. Steckelberg C, Andrietta MDGS, Andrietta SR, Stupielloé ENA (2013) Yeast proteins originated from the production of Brazilian bioethanol quantification and content. Int J Food Eng 9(1):141–146. https://doi.org/10.1515/ijfe-2012-0179

    CAS  Article  Google Scholar 

  108. Stehlik-Tomas V, Zetić VG, Stanzer D, Grba S, Vahčić N (2004) Zinc, copper and manganese enrichment in yeast Saccharomyces cerevisiae. Food Technol Biotechnol 42(2):115–120

    CAS  Google Scholar 

  109. Suwanapong S, Khongsay N, Laopaiboon L, Jaisil P, Laopaiboon P (2013) Dried spent yeast and its hydrolysate as nitrogen supplements for single batch and repeated-batch ethanol fermentation from sweet sorghum juice. Energies 6(3):1618–1631. https://doi.org/10.3390/en6031618

    CAS  Article  Google Scholar 

  110. Tangüler H, Erten H (2008) Utilisation of spent brewer’s yeast for yeast extract production by autolysis: the effect of temperature. Food Bioprod Process 86(4):317–321. https://doi.org/10.1016/j.fbp.2007.10.015

    Article  Google Scholar 

  111. Varga E, Maráz A (2002) Yeast cells as sources of essential microelements and vitamins B1 and B2. Acta Aliment 31(4):393–405. https://doi.org/10.1556/AAlim.31.2002.4.8

    CAS  Article  Google Scholar 

  112. Vieira E, Brandão T, Ferreira IMPLVO (2013) Evaluation of brewer’s spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. J Agric Food Chem 61(37):8724–8729. https://doi.org/10.1021/jf4021619

    CAS  Article  PubMed  Google Scholar 

  113. Vieira E, Teixeira J, Ferreira I (2016a) Valorization of brewers’ spent grain and spent yeast through protein hydrolysates with antioxidant properties. Eur Food Res Technol 242:1975–1984. https://doi.org/10.1007/s00217-016-2696-y

    CAS  Article  Google Scholar 

  114. Vieira EF, Ferreira IM (2017) Antioxidant and antihypertensive hydrolysates obtained from by-products of cannery sardine and brewing industries. Int J Food Prop 20(3):662–673. https://doi.org/10.1080/10942912.2016.1176036

    CAS  Article  Google Scholar 

  115. Vieira EF, Carvalho J, Pinto E, Cunha S, Almeida AA, Ferreira IMPLVO (2016b) Nutritive value, antioxidant activity and phenolic compounds profile of brewer’s spent yeast extract. J Food Compos Anal 52:44–51. https://doi.org/10.1016/j.jfca.2016.07.006

    CAS  Article  Google Scholar 

  116. Vieira EF, das Neves J, Vitorino R, Dias da Silva D, Carmo H, Ferreira IMPLVO (2016c) Impact of in vitro gastrointestinal digestion and transepithelial transport on antioxidant and ACE-inhibitory activities of brewer’s spent yeast autolysate. J Agric Food Chem 64(39):7335–7341. https://doi.org/10.1021/acs.jafc.6b02719

  117. Vieira EF, Melo A, Ferreira IMPLVO (2017a) Autolysis of intracellular content of brewer’s spent yeast to maximize ACE-inhibitory and antioxidant activities. LWT 82:255–259. https://doi.org/10.1016/j.lwt.2017.04.046

    CAS  Article  Google Scholar 

  118. Vieira EF, da Silva DD, Carmo H, Ferreira IM (2017b) Protective ability against oxidative stress of brewers’ spent grain protein hydrolysates. Food Chem 228:602–609. https://doi.org/10.1016/j.foodchem.2017.02.050

    CAS  Article  PubMed  Google Scholar 

  119. Vilela ESD, Sgarbieri VC, Alvim ID (2000) Determination of protein value of integral cells, total autolysate and yeast extract (Saccharomyces sp.). Braz J Nutr 13(3):185–192, https://doi.org/10.1590/S1415-52732000000300005

  120. Williams R, Dias DA, Jayasinghe N, Roessner U, Bennett LE (2016) \(\beta\)-Glucan-depleted, glycopeptide-rich extracts from brewer’s and baker’s yeast (Saccharomyces cerevisiae) lower interferon-\(\gamma\) production by stimulated human blood cells in vitro. Food Chem 197:761–768. https://doi.org/10.1016/j.foodchem.2015.11.015

    CAS  Article  PubMed  Google Scholar 

  121. Xia Y, Bamdad F, Gänzle M, Chen L (2012) Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chem. https://doi.org/10.1016/j.foodchem.2012.03.063

    Article  PubMed  Google Scholar 

  122. Xie J, Cui C, Ren J, Zhao M, Zhao L, Wang W (2017) High solid concentrations facilitate enzymatic hydrolysis of yeast cells. Food Bioprod Process 103:114–121. https://doi.org/10.1016/j.fbp.2017.03.004

    CAS  Article  Google Scholar 

  123. Yamada EA, Cipolli KMAVB, Harada MM, Sgarbieri VC (2010) Utilização de extrato de levedura (Saccharomyces sp.) de destilaria de álcool em salsicha. Braz J Food Technol 13(3):197–204. https://doi.org/10.4260/BJFT2010130300026

    Article  Google Scholar 

  124. Yu KW, Kim JM, Oh SH, Chang UJ, Suh HJ (2002) Physiological effects of yeast hydrolysate SCP-20. Food Res Int 35(9):879–884. https://doi.org/10.1016/S0963-9969(02)00097-2

    CAS  Article  Google Scholar 

  125. Yuan X, Gu X, Tang J (2008) Optimization of the production of Momordica charantia l. var. abbreviata ser. protein hydrolysates with hypoglycemic effect using alcalase. Food Chem 111(2):340–344. https://doi.org/10.1016/j.foodchem.2008.03.070

    CAS  Article  PubMed  Google Scholar 

  126. Yusaf T, Al-Juboori RA (2014) Alternative methods of microorganism disruption for agricultural applications. Appl Energy 114:909–923. https://doi.org/10.1016/j.apenergy.2013.08.085

    Article  Google Scholar 

  127. Yılmaz C, Gökmen V (2018) Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food Chem 243:420–427. https://doi.org/10.1016/j.foodchem.2017.10.004

    CAS  Article  PubMed  Google Scholar 

  128. Yılmaz C, Gökmen V (2019) Kinetic evaluation of the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using Saccharomyces pastorianus and Saccharomyces cerevisiae. Food Chem 297:124975. https://doi.org/10.1016/j.foodchem.2019.124975

    CAS  Article  PubMed  Google Scholar 

  129. Yılmaz C, Gökmen V (2020) Neuroactive compounds in foods: occurrence, mechanism and potential health effects. Food Res Int 128:108744. https://doi.org/10.1016/j.foodres.2019.108744

    CAS  Article  PubMed  Google Scholar 

  130. Zhang SB (2016) In vitro antithrombotic activities of peanut protein hydrolysates. Food Chem 202:1–8. https://doi.org/10.1016/j.foodchem.2016.01.108

    CAS  Article  PubMed  Google Scholar 

  131. Ziener S, McNally J (2019) Beverage trends: beer (market survey). https://www.braubeviale.de/en/news/press-releases/beverage-trends-beer-phs9j1b7cb_pireport

Download references

Acknowledgements

This work was supported by FAPESP (São Paulo Research Foundation, Grant Numbers #2016/18465-8, #2018/04067-6) and CNPq (Brazilian National Council for Scientific and Technological Development, Grant Number 306461-2017-0). The authors are also thankful to Food Engineering Doctoral Program of UNICAMP (Brazil), GAIA Doctoral School, Institut Européen des Membranes (Université de Montpellier, France), Tiago Afonso Marenda, Martin Hartinger and Philipp Hartinger from Brauerei Stierberg (Stierberg, Germany).

Author information

Affiliations

Authors

Contributions

All authors contributed to the idea and concept of the study. Literature search and data analysis was performed by GVM. The first draft of the manuscript was written by GVM and all authors reviewed and commented on previous versions of the manuscript. Funding acquisition, resources and supervision were done by M-PB and MDH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gabriela Vollet Marson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marson, G.V., de Castro, R.J.S., Belleville, M. et al. Spent brewer’s yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World J Microbiol Biotechnol 36, 95 (2020). https://doi.org/10.1007/s11274-020-02866-7

Download citation

Keywords

  • Alternative sources of protein
  • Autolysis
  • Beer by-products
  • Enzymatic hydrolysis
  • Saccharomyces sp.
  • Yeast peptides