Skip to main content

Advertisement

Log in

Microbial chitinases: properties, current state and biotechnological applications

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl d-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VG (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adrangi S, Faramarzi MA (2013) From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 31:1786–1795

    CAS  PubMed  Google Scholar 

  • Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109

    CAS  PubMed  Google Scholar 

  • Allonsius CN et al (2019) Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Sci Rep 9:2900

    PubMed  PubMed Central  Google Scholar 

  • Alsina C, Faijes M, Planas A (2019) Glycosynthase-type GH18 mutant chitinases at the assisting catalytic residue for polymerization of chitooligosaccharides. Carbohydr Res 478:1–9

    CAS  PubMed  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of a tannase from Aspergillus niger LCF 8. J Ferment Bioeng 77:320–323

    CAS  Google Scholar 

  • Bekale L, Agudelo D, Tajmir-Riahi H (2015) Effect of polymer molecular weight on chitosan–protein interaction. Colloids Surf B 125:309–317

    CAS  Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodrı́guez-Herrera R, Coronel AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. LWT-Food Sci Technol 37:857–864

    CAS  Google Scholar 

  • Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56

    CAS  Google Scholar 

  • Berger LR, Reynold DM (1958) The chitinase system of a strain of Streptomyces griseus. Biochim Biophys Acta 29:522–534

    CAS  PubMed  Google Scholar 

  • Berini F, Katz C, Gruzdev N, Casartelli M, Tettamanti G, Marinelli F (2018) Microbial and viral chitinases: attractive biopesticides for integrated pest management. Biotechnol Adv 36:818–838

    CAS  PubMed  Google Scholar 

  • Bhatnagar A, Sillanpää M (2009) Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interface Sci 152:26–38

    CAS  PubMed  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M (2014) Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68:71–81

    Google Scholar 

  • Cardozo FA, Gonzalez JM, Feitosa VA, Pessoa A, Rivera ING (2017) Bioconversion of α-chitin into N-acetyl-glucosamine using chitinases produced by marine-derived Aeromonas caviae isolates. World J Microbiol Biotechnol 33:201

    PubMed  Google Scholar 

  • Castillo BM, Dunn MF, Navarro KG, Meléndez FH, Ortiz MH, Guevara SE, Palacios GH (2016) Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet. World J Microbiol Biotechnol 32:44

    PubMed  Google Scholar 

  • Chalutz E, Droby S (1998) Biological control of postharvest disease. In: Boland G (ed) Plant–microbe interactions and biological control. Dekker, New York, pp 157–170

    Google Scholar 

  • Chang S-H, Lin Y-Y, Wu G-J, Huang C-H, Tsai GJ (2019) Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. Int J Biol Macromol 131:167–175

    CAS  PubMed  Google Scholar 

  • Consortium U (2018) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Google Scholar 

  • Cremar L, Gutierrez J, Martinez J, Materon L, Gilkerson R, Xu F, Lozano K (2018) Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomed J 5:6–14

    CAS  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    CAS  PubMed  Google Scholar 

  • Deng J-J, Shi D, Mao H-H, Li Z-W, Liang S, Ke Y, Luo X-C (2019) Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. Int J Biol Macromol. 134:113–121

    CAS  PubMed  Google Scholar 

  • Dev A et al (2010) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 79:1073–1079

    CAS  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    PubMed  Google Scholar 

  • Dutta PK (2016) Chitin and chitosan for regenerative medicine. Springer, New Delhi

    Google Scholar 

  • Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411

    CAS  Google Scholar 

  • Fernandes JC, Tavaria FK, Soares JC, Ramos ÓS, Monteiro MJ, Pintado ME, Malcata FX (2008) Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol 25:922–928

    CAS  PubMed  Google Scholar 

  • Funkhouser JD, Aronson NN (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7:96

    PubMed  PubMed Central  Google Scholar 

  • Gao L, Sun J, Secundo F, Gao X, Xue C, Mao X (2018) Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414. Food Chem 261:329–336

    CAS  PubMed  Google Scholar 

  • Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387

    CAS  PubMed  Google Scholar 

  • Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycol Prog 7:221–238

    Google Scholar 

  • Gutiérrez-Román MI, Holguín-Meléndez F, Dunn MF, Guillén-Navarro K, Huerta-Palacios G (2015) Antifungal activity of Serratia marcescens CFFSUR-B2 purified chitinolytic enzymes and prodigiosin against Mycosphaerella fijiensis, causal agent of black Sigatoka in banana (Musa spp.). BioControl 60:565–572

    Google Scholar 

  • Halbedel S et al (2019) A Listeria monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis. Emerg Microbes Infect 8:17–28

    PubMed  PubMed Central  Google Scholar 

  • Halder SK, Pal S, Mondal KC (2019) Biosynthesis of fungal chitinolytic enzymes and their potent biotechnological appliances. In: Yadav A, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Springer, Cham, pp 281–298

    Google Scholar 

  • Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21

    PubMed  PubMed Central  Google Scholar 

  • Han B et al (2016) Characterization of the first fungal glycosyl hydrolase family 19 Chitinase (NbchiA) from Nosema bombycis (Nb). J Eukaryot Microbiol 63:37–45

    CAS  PubMed  Google Scholar 

  • Hou F et al (2019) Activation and conformational changes of chitinase induced by ultrasound. Food Chem 285:355–362

    CAS  PubMed  Google Scholar 

  • Huang Q-S et al (2011) The GH18 family of chitinases: their domain architectures, functions and evolutions. Glycobiology 22:23–34

    PubMed  Google Scholar 

  • Hurtado-Guerrero R, van Aalten DM (2007) Structure of Saccharomyces cerevisiae chitinase 1 and screening-based discovery of potent inhibitors. Chem Biol 14:589–599

    CAS  PubMed  Google Scholar 

  • Itoh T et al (2013) Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Appl Environ Microbiol 79:7482–7490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh T, Kimoto H (2019) Bacterial chitinase system as a model of chitin biodegradation. In: Yang Q, Fukamizo T (eds) Targeting chitin-containing organisms. Springer, Singapore, pp 131–151

    Google Scholar 

  • Jahromi ST, Barzkar N (2018) Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.09.083

    Article  Google Scholar 

  • Jiang C et al (2014) Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy. Int J Pharm 475:60–68

    CAS  PubMed  Google Scholar 

  • Juárez-Hernández EO, Casados-Vázquez LE, Brieba LG, Torres-Larios A, Jimenez-Sandoval P, Barboza-Corona JE (2019) The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly. Sci Rep 9:2591

    PubMed  PubMed Central  Google Scholar 

  • Jung W-J, Park R-D (2014) Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs 12:5328–5356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Junges  et al (2014) Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus Metarhizium anisopliae. PLoS ONE 9:e107864

    PubMed  PubMed Central  Google Scholar 

  • Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta (BBA) Gen Subj 1473:108–122.

    Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    CAS  PubMed  Google Scholar 

  • Kumari S, Rath P, Kumar ASH, Tiwari T (2015) Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ Technol Innov 3:77–85

    Google Scholar 

  • Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767

    CAS  PubMed  Google Scholar 

  • Kusaoke H, Shinya S, Fukamizo T, Kimoto H (2017) Biochemical and biotechnological trends in chitin, chitosan, and related enzymes produced by Paenibacillus IK-5 Strain. Int J Biol Macromol 104:1633–1640

    CAS  PubMed  Google Scholar 

  • Langner T, Göhre V (2016) Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 62:243–254

    CAS  PubMed  Google Scholar 

  • Langner T, Öztürk M, Hartmann S, Cord-Landwehr S, Moerschbacher B, Walton JD, Göhre V (2015) Chitinases are essential for cell separation in Ustilago maydis. Eukaryot Cell 14:846–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le B, Yang SH (2018) Characterization of a chitinase from Salinivibrio sp. BAO-1801 as an antifungal activity and a biocatalyst for producing chitobiose. J Basic Microbiol 58:848–856

    CAS  PubMed  Google Scholar 

  • Lee H-W, Park Y-S, Jung J-S, Shin W-S (2002) Chitosan oligosaccharides, dp 2–8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe 8:319–324

    PubMed  Google Scholar 

  • Lee Y-S et al (2007) Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresour Technol 98:2734–2741

    CAS  PubMed  Google Scholar 

  • Lekha P, Lonsane B (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface an submerged fermentations. Process Biochem 29:497–503

    CAS  Google Scholar 

  • Leoni C, Volpicella M, Dileo M, Gattulli BA, Ceci LR (2019) Chitinases as food allergens. Molecules 24:2087

    CAS  PubMed Central  Google Scholar 

  • Liang S, Sun Y, Dai X (2018) A review of the preparation, analysis and biological functions of chitooligosaccharide. Int J Mol Sci 19:2197

    PubMed Central  Google Scholar 

  • Liaqat F, Eltem R (2018) Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym 184:243–259

    CAS  PubMed  Google Scholar 

  • Liu J, NanGong Z, Zhang J, Song P, Tang Y, Gao Y, Wang Q (2019) Expression and characterization of two chitinases with synergistic effect and antifungal activity from Xenorhabdus nematophila. World J Microbiol Biotechnol 35:106

    PubMed  Google Scholar 

  • Madhuprakash J, Dalhus B, Vaaje-Kolstad G, Sakuda S, Podile AR, Eijsink VG, Sørlie M (2019) Structural and thermodynamic signatures of ligand binding to the enigmatic chitinase D of Serratia proteamaculans. J Phys Chem B 123:2270–2279

    CAS  PubMed  Google Scholar 

  • Mattaveewong T, Wongkrasant P, Chanchai S, Pichyangkura R, Chatsudthipong V, Muanprasat C (2016) Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr Polym 145:30–36

    CAS  PubMed  Google Scholar 

  • Meibom KL, Li XB, Nielsen AT, Wu C-Y, Roseman S, Schoolnik GK (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci 101:2524–2529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miksusanti M, Saputra H, Sandi S, Hermansyah H (2016) The effect of Lactobacillus acidophilus and chito-oligosaccharide on antibacterial activity and organic acid production. IJFAC (Indones J Fundam Appl Chem) 1:29–34

    Google Scholar 

  • Monreal J, Reese ET (1969) The chitinase of Serratia marcescens. Can J Microbiol 15:689–696

    CAS  PubMed  Google Scholar 

  • Murao S, Kawada T, Itoh H, Oyama H, Shin T (1992) Purification and characterization of a novel type of chitinase from Vibrio alginolyticus TK-22. Biosci Biotechnol Biochem 56:368–369

    CAS  Google Scholar 

  • Muzzarelli RA (2013) Chitin. Elsevier, Kent

    Google Scholar 

  • Mythili J, Chethana B, Rajeev P, Ganeshan G (2018) Chitinase gene construct from Trichoderma harzianum proved effective against onion purple blotch caused by Alternaria porri

  • Nasseri A, Rasoul-Amini S, Morowvat M, Ghasemi Y (2011) Single cell protein: production and process. Am J Food Technol 6:103–116

    CAS  Google Scholar 

  • Ohishi K, Murase K, Ohta T, Etoh H (2000) Cloning and sequencing of a chitinase gene from Vibrio alginolyticus H-8. J Biosci Bioeng 89:501–505

    CAS  PubMed  Google Scholar 

  • Pan M, Li J, Lv X, Du G, Liu L (2019) Molecular engineering of chitinase from Bacillus sp. DAU101 for enzymatic production of chitooligosaccharides. Enzyme Microb Technol 124:54–62

    CAS  PubMed  Google Scholar 

  • Pan XQ, Shih CC, Harday J (2005) Chitinase induces lysis of MCF-7 cells in culture and of human breast cancer xenograft B11–2 in SCID mice. Anticancer Res 25:3167–3172

    CAS  PubMed  Google Scholar 

  • Park JK, Chung MJ, Choi HN, Park YI (2011) Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int J Mol Sci 12:266–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel S, Goyal A (2011) Functional oligosaccharides: production, properties and applications. World J Microbiol Biotechnol 27:1119–1128

    CAS  Google Scholar 

  • Patil NS, Jadhav JP (2014) Enzymatic production of N-acetyl-D-glucosamine by solid state fermentation of chitinase by Penicillium ochrochloron MTCC 517 using agricultural residues. Int Biodeterior Biodegrad 91:9–17

    CAS  Google Scholar 

  • Paulsen SS, Strube ML, Bech PK, Gram L, Sonnenschein EC (2019) Marine chitinolytic Pseudoalteromonas represents an untapped reservoir of bioactive potential. mSystems. https://doi.org/10.1128/mSystems.00060-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinnamaneni R, Kalidas P, Rao KS (2010) Cloning and expression of Bbchit1 gene of Beauveria bassiana. J Entomol 4:30–35

    CAS  Google Scholar 

  • Rathore AS, Gupta RD (2015) Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. https://doi.org/10.1155/2015/791907

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    CAS  Google Scholar 

  • Robbins PW, Albright C, Benfield B (1988) Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J Biol Chem 263:443–447

    CAS  PubMed  Google Scholar 

  • Rødde RH, Einbu A, Vårum KM (2008) A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym 71:388–393

    Google Scholar 

  • Sahai A, Manocha M (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host–parasite interaction. FEMS Microbiol Rev 11:317–338

    CAS  Google Scholar 

  • Samain E, Drouillard S, Heyraud A, Driguez H, Geremia RA (1997) Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr Res 302:35–42

    CAS  PubMed  Google Scholar 

  • Selenius O, Korpela J, Salminen S, Gallego CG (2018) Effect of chitin and chitooligosaccharide on in vitro growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Appl Food Biotechnol 5:163–172

    CAS  Google Scholar 

  • Sharma R, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Google Scholar 

  • Sousa AJ et al (2019) A thermostable chitinase from the antagonistic Chromobacterium violaceum that inhibits the development of phytopathogenic fungi. Enzyme Microb Technol 126:50–61

    CAS  PubMed  Google Scholar 

  • Stoykov YM, Pavlov AI, Krastanov AI (2015) Chitinase biotechnology: production, purification, and application. Eng Life Sci 15:30–38

    CAS  Google Scholar 

  • Sun X, Li Y, Tian Z, Qian Y, Zhang H, Wang L (2019) A novel thermostable chitinolytic machinery of Streptomyces sp. F-3 consisting of chitinases with different action modes. Biotechnol Biofuels 12:136

    PubMed  PubMed Central  Google Scholar 

  • Suresh P, Kumar PA (2012) Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi. Biodegradation 23:597–607

    CAS  PubMed  Google Scholar 

  • Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408

    CAS  PubMed  Google Scholar 

  • Take K, Fujiki H, Suyotha W, Hayashi J, Takagi K, Yano S, Wakayama M (2018) Enzymatic and molecular characterization of an acidic and thermostable chitinase 1 from Streptomyces thermodiastaticus HF 3–3. J Gen Appl Microbiol. https://doi.org/10.2323/jgam.2017.12.002

    Article  PubMed  Google Scholar 

  • Tanaka H, Phaff HJ (1965) Enzymatic hydrolysis of yeast cell walls I. Isolation of wall-decomposing organisms and separation and purification of lytic enzymes. J Bacteriol 89:1570–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Fukui T, Atomi H, Imanaka T (2003) Characterization of an exo-β-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:5175–5181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terrapon N, Lombard V, Drula E, Coutinho PM, Henrissat B (2017) The CAZy database/the carbohydrate-active enzyme (CAZy) database: principles and usage guidelines. In: Aoki-Kinoshita K (ed) A practical guide to using glycomics databases. Springer, Tokyo, pp 117–131

    Google Scholar 

  • Thanou M, Florea B, Geldof M, Junginger H, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23:153–159

    CAS  PubMed  Google Scholar 

  • Tom RA, Carroad PA (1981) Effect of reaction conditions on hydrolysis of chitin by Serratia marcescens QMB 1466 chitinase. J Food Sci 46:646–647

    CAS  Google Scholar 

  • Tuveng TR, Hagen LH, Mekasha S, Frank J, Arntzen MØ, Vaaje-Kolstad G, Eijsink VG (2017) Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200. Biochim Biophys Acta (BBA)—Proteins Proteom 1865:414–421

    CAS  Google Scholar 

  • Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG (2013) The chitinolytic machinery of Serratia marcescens—a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 280:3028–3049

    CAS  PubMed  Google Scholar 

  • Vaikuntapu PR, Rambabu S, Madhuprakash J, Podile AR (2016) A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin. Bioresour Technol 220:200–207

    CAS  PubMed  Google Scholar 

  • Vyas P, Deshpande M (1991) Enzymatic hydrolysis of chitin by Myrothecium verbucaria chitinase complex and its utilization to produce SCP. J Gen Appl Microbiol 37:267–275

    CAS  Google Scholar 

  • Wadhwa M, Bakshi M (2016) Application of waste-derived proteins in the animal feed industry. In: Protein byproducts. Elsevier, pp 161–192

  • Watanabe T, Kanai R, Kawase T, Tanabe T, Mitsutomi M, Sakuda S, Miyashita K (1999) Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology 145:3353–3363

    CAS  PubMed  Google Scholar 

  • Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268:18567–18572

    CAS  PubMed  Google Scholar 

  • Watanabe T, Oyanagi W, Suzuki K, Ohnishi K, Tanaka H (1992) Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinases and class III plant chitinases. J Bacteriol 174:408–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31:1217–1225

    CAS  PubMed  Google Scholar 

  • Zhang A, He Y, Wei G, Zhou J, Dong W, Chen K, Ouyang P (2018) Molecular characterization of a novel chitinase Cm Chi1 from Chitinolyticbacter meiyuanensis SYBC-H1 and its use in N-acetyl-d-glucosamine production. Biotechnol Biofuels 11:179

    PubMed  PubMed Central  Google Scholar 

  • Zhou J, Chen L, Kang L, Liu Z, Bai Y, Yang Y, Yuan S (2018) ChiE1 from Coprinopsis cinerea is characterized as a processive exochitinase and revealed to have a significant synergistic action with endochitinase ChiIII on chitin degradation. J Agric Food Chem 66:12773–12782

    CAS  PubMed  Google Scholar 

  • Zou P et al (2019) Structural characterization and antitumor effects of chitosan oligosaccharides against orthotopic liver tumor via NF-κB signaling pathway. J Funct Foods 57:157–165

    CAS  Google Scholar 

  • Zou P, Yuan S, Yang X, Zhai X, Wang J (2018) Chitosan oligosaccharides with degree of polymerization 2–6 induces apoptosis in human colon carcinoma HCT116 cells. Chem Biol Interact 279:129–135

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was carried out with the support of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2017R1D1A3B03027816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hwan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, B., Yang, S.H. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 35, 144 (2019). https://doi.org/10.1007/s11274-019-2721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2721-y

Keywords

Navigation