Skip to main content
Log in

Agrobacterium-mediated transformation of the ascomycete mushroom Morchella importuna using polyubiquitin and glyceraldehyde-3-phosphate dehydrogenase promoter-based binary vectors

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Morchella importuna is a worldwide distributed edible mushroom with high ecological and economic values, but the molecular and genetic research about this mushroom has been hindered due to lack of an efficient transformation method. Here, we report for the first time the successful transformation of M. importuna by using a hypervirulent Agrobacterium tumefaciens strain bearing the constructed binary plasmid p1391-U-GUS. The selectable markers used were the genes for hygromycin resistance under the control of the polyubquitin promoter from M. importuna. The reporter genes were those for enhanced green fluorescent protein (EGFP) and the β-Glucuronidase (GUS) under the control of glyceraldehyde-3-phosphate dehydrogenase promoter and polyubquitin promoter respectively. The presence of the reporter gene EGFP in the transformants was confirmed by the fluorescence and confocal microscope and molecular analysis and that of the reporter gene GUS was verified by enzyme activity and molecular analysis. The analysis results of both reporter genes indicated that Agrobacterium-mediated transformation was successfully performed in M. importuna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bundock P, Den Dulkras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    Article  CAS  Google Scholar 

  • Buscot F, Roux J (1987) Association between living roots and ascocarps of Morchella rotunda. Trans Br Mycol Soc 89:249–252

    Article  Google Scholar 

  • Buscotand F, Kottke I (1990) The association of Morchella rotunda (Pers.) Boudier with roots of Picea abies. (L.) Karst. New Phytol 116:425–430

    Article  Google Scholar 

  • Carris LM, Peever TL, Mccotter SW (2015) Mitospore stages of disciotis, gyromitra and morchella in the inland Pacific Northwest USA. Mycologia 107:729–744

    Article  CAS  Google Scholar 

  • Chen L, Chai H, Chen W, Huang X, Zhao Y (2014) Gene expressing difference in sclerotial formation of Morchella conica. Indian J Microbiol 54:274–283

    Article  CAS  Google Scholar 

  • Combier J, Melayah D, Raffier C, Gay G, Marmeisse R (2003) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. Fems Microbiol Lett 220:141–148

    Article  CAS  Google Scholar 

  • Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens- mediated transformation of Fusarium circinatum. Mycol Res 105:259–264. https://doi.org/10.1017/S0953756201003872

    Article  CAS  Google Scholar 

  • Ding Y, Liang S, Lei J, Chen L, Kothe E, Ma A (2011) Agrobacterium tumefaciens mediated fused EGFP-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 166:314–322

    Article  CAS  Google Scholar 

  • Du X, Zhao Q, Odonnell K, Rooney AP, Yang ZL (2012) Multigene molecular phylogenetics reveals true morels (Morchella) are especially species-rich in China. Fungal Genet Biol 49:455–469

    Article  CAS  Google Scholar 

  • Du X, Zhao Q, Yang ZL (2015) A review on research advances, issues, and perspectives of morels. Mycology 6:78–85

    Article  Google Scholar 

  • Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378

    Article  CAS  Google Scholar 

  • Grimaldi B, Raaf MAD, Filetici P, Ottonello S, Ballario P (2005) Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Curr Genet 48:69–74

    Article  CAS  Google Scholar 

  • Hibbett DS et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509

    Article  Google Scholar 

  • Hirano T, Sato T, Okawa K, Kanda K, Yaegashi K, Enei H (1999) Isolation and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Lentinus edodes. Biosci Biotechnol Biochem 63:1223–1227. https://doi.org/10.1271/bbb.63.1223

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Weber NS, Trappe JM (2001) Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytol 150:601–610

    Article  CAS  Google Scholar 

  • Holland JP, Holland MJ (1979) The primary structure of a glyceraldehyde-3-phosphate dehydrogenase gene from Saccharomyces cerevisiae. J Biol Chem 254:9839–9845

    CAS  PubMed  Google Scholar 

  • Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J (2013) Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31:1562–1574

    Article  CAS  Google Scholar 

  • Kellner H, Luis P, Buscot F (2007) Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. Fems Microbiol Ecol 61:153–163

    Article  CAS  Google Scholar 

  • Kohler A et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410

    Article  CAS  Google Scholar 

  • Kuo C, Huang C (2008) A reliable transformation method and heterologous expression of beta-glucuronidase in Lentinula edodes. J Microbiol Methods 72:111–115

    Article  CAS  Google Scholar 

  • Leclerque A, Wan H, Abschütz A, Chen S, Mitina GV, Zimmermann G, Schairer HU (2004) Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr Genet 45:111–119

    Article  CAS  Google Scholar 

  • Lin J, Zheng M, Wang J, Shu W, Guo L (2008) Efficient transformation and expression of gene in the edible mushroom Pleurotus nebrodensis. Progress Nat Sci 18:819–824

    Article  CAS  Google Scholar 

  • Liu Z, Friesen TL (2012) Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods Mol Biol 835:365

    Article  CAS  Google Scholar 

  • Liu C, Sun Y, Mao Q, Guo X, Li P, Liu Y, Xu N (2016) Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field. Int J Mol Sci 17:986

    Article  Google Scholar 

  • Liu Q, Ma H, Zhang Y, Dong C (2018) Artificial cultivation of true morels: current state, issues and perspectives. Crit Rev Biotechnol 38:259–271. https://doi.org/10.1080/07388551.2017.1333082

    Article  PubMed  Google Scholar 

  • Lorang JM et al (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994

    Article  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  CAS  Google Scholar 

  • Pildain MB, Visnovsky SB, Barroetaveña C (2014) Phylogenetic diversity of true morels (Morchella), the main edible non-timber product from native Patagonian forests of Argentina. Fungal Biol 118:755–763

    Article  Google Scholar 

  • Poggeler S, Masloff SB, Mayrhofer S, Kuck U (2003) Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr Genet 43:54–61

    PubMed  Google Scholar 

  • Richard F et al (2015) True morels (Morchella, Pezizales) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia 107:359–382

    Article  Google Scholar 

  • Saa AS, Scott TA, Bailey AM, Foster GD (2017) Improved vectors for Agrobacterium mediated genetic manipulation of Hypholoma spp. and other homobasidiomycetes. J Microbiol Methods 142:4–9

    Article  Google Scholar 

  • Sørensen LQ, Lysøe E, Larsen JE, Khorsand-Jamal P, Nielsen KF, Frandsen RJN (2014) Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system. BMC Mol Biol 15:15

    Article  Google Scholar 

  • Tao YB, He LL, Niu LJ, Xu ZF (2015) Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas. Planta 241:823–836

    Article  CAS  Google Scholar 

  • Weld RJ, Eady CC, Ridgway HJ (2006) Agrobacterium-mediated transformation of Sclerotinia sclerotiorum. J Microbiol Methods 65:202

    Article  CAS  Google Scholar 

  • Yin C, Zhao W, Zheng L, Chen L, Tan Q, Shang X, Ma A (2014) High-level expression of a manganese superoxide dismutase (PoMn-SOD) from Pleurotus ostreatus in Pichia pastoris. Appl Biochem Biotechnol 174:259–269

    Article  CAS  Google Scholar 

  • Yin C, Zheng L, Zhu J, Chen L, Ma A (2015) Enhancing stress tolerance by overexpression of a methionine sulfoxide reductase A (MsrA) gene in Pleurotus ostreatus. Appl Microbiol Biotechnol 99:3115–3126

    Article  CAS  Google Scholar 

  • Zhang J et al (2014) An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus. Microbiol Res 169:741

    Article  CAS  Google Scholar 

  • Zheng Z, Huang C, Cao L, Xie C, Han R (2011) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115:265–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant Number 2662015PY058); Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (Grant Number 2662014BQ016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Chen, X., Mou, C. et al. Agrobacterium-mediated transformation of the ascomycete mushroom Morchella importuna using polyubiquitin and glyceraldehyde-3-phosphate dehydrogenase promoter-based binary vectors. World J Microbiol Biotechnol 34, 148 (2018). https://doi.org/10.1007/s11274-018-2529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2529-1

Keywords

Navigation