Skip to main content
Log in

Regulatory phosphorylation of poly-γ-glutamic acid with phosphate salts in the culture of Bacillus subtilis (natto)

  • Original Article
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Poly-γ-glutamic acid (PGA) was easily phosphorylated by direct addition of phosphorylating agents into the culture medium of Bacillus subtilis (natto). Tetrapolyphosphate salt was the most incorporated into PGA molecules of all used reagents. Phosphorylation occurred at the α-carboxyl side chains of PGA molecule. The amounts of bound phosphate to PGA were dependent on the amounts of added phosphorylating agent. In low molecular weight regions of less than 100 kDa, a cross-linked peak was observed in the phosphorylated PGAs, whereas their peaks at approximately 1000 kDa shifted to a higher molecular weight due to the bound phosphate. The PGA derivatives had a wide range in viscosity up to 15/1000 to 15 times when compared to the native PGA, depending on the degree of phosphorylation (DP) in the PGA derivatives. The PGA with low DP had a high viscosity due to the unfolding conformation whereas highly phosphorylated PGA had aggregation with low viscosity. Heat treatment at 80 °C after the addition of phosphate salt elicited a novel collagen-like helix structure. These observations show that phosphorylation is an effective way to diversify the physicochemical properties of PGA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed GAR, Khorshid FAR, Kumosani TA (2009) FT-IR spectroscopy as a tool for identification of apoptosis-induced structural changes in A549 cells treated PM701. Int J Nano Biomater 2:396–408

    Article  CAS  Google Scholar 

  • Akagi T, Matsusaki M, Akashi M (2010) Pharmaceutical and medical applications of poly-gamma-glutamic acid. In: Hamano Y (ed) Amino-acid homopolymers occuring in nature, microbiology monographs 15. Springer-Verlag, Berlin, pp 119–153

    Chapter  Google Scholar 

  • Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, Soda K, Yagi T, Misano H (2001) Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis. Eur J Biochem 268:5321–5328

    Article  CAS  PubMed  Google Scholar 

  • Blanch H (2008) The kinetics of aggregation of poly-glutamic acid based polypeptides. Biophys Chem 136:74–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardamone M, Puri NK (1992) Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem J 282:589–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cejas MA, Kinney WA, Chen C, Vinter JG, Almond JHR, Balss KM, Maryanoff CA, Schmidt U, Breslav M, Mahan A, Lacy E, Maryanoff BE (2008) Thrombogenic collagen-mimetic peptides: self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc Natl Acad Sci USA 105:8513–8518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filip Z, Herrmann S, Kubat J (2004) FT-IR spectroscopic characteristics of differently cultivated Bacillus subtilis. Microbiol Res 159:257–262

    Article  CAS  PubMed  Google Scholar 

  • Goto A, Kunioka M (1992) Biosynthesis and hydrolysis of poly (gamma-glutamic acid) from Bacillus subtilis IFO3335. Biosci Biotechnol Biochem 156:1031–1035

    Article  Google Scholar 

  • Greenfield NJ (2006) Using circular dichronism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimshaw CE, Huang S, Hanstein CG, Strauch MA, Burbulys D, Wang L, Hoch JA, Whiteley JM (1998) Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Holmgren SK, Taylor KM, Bretscher LE, Raines RT (1998) Code for collagen’s stability deciphered. Nature 392:666–667

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ (2005) Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials 26:5617–5623

    Article  CAS  PubMed  Google Scholar 

  • Johnson LN, Barford D (1993) The effects of phosphorylation on the structure and function of proteins. Annu Rev Biophys Biomol Struct 22:199–232

    Article  CAS  PubMed  Google Scholar 

  • Joseph MH, Davies P (1983) Electrochemical activity of o-phthalaldehyde -mercaptoethanol derivatives of amino acids: application to high-performance liquid chromatographic determination of amino acids in plasma and other biological materials. J Chromatogr B Biomed Sci Appl 277:125–136

    Article  CAS  Google Scholar 

  • Kajiyama T, Kuroishi M, Takayanagi M (1975) The mechanisms of the viscoelastic crystalline absorption of polyglutamic acid ester. J Macromol Sci 11:121–150

    Article  Google Scholar 

  • Kambourova M, Tangney M, Priest FG (2001) Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl Environ Microbiol 67:1004–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katewa SD, Katyare SS (2003) A simplified method for inorganic phosphate determination and its application for phosphate analysis in enzyme assays. Anal Biochem 323:180–187

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Tranan LSP, Uchida I, Itoh Y (2004) Characterization of Bacillus subtilis γ-glutamyltransferase and its involvement in the degradation of capsule poly-γ-glutamate. Microbiology 150:4115–4123

    Article  CAS  PubMed  Google Scholar 

  • Kongklom N, Chuensangjun C, Pechyen C, Sirisansaneeyakul S (2012) Production of poly-γ-glutamic acid by Bacillus licheniformis: synthesis and characterization. J Metal Mater Miner 22:7–11

    CAS  Google Scholar 

  • Krebs MRH, Domike KR, Donald AM (2009) Protein aggregation: more than just fibrils. Biochem Soc Trans 37:682–686

    Article  CAS  PubMed  Google Scholar 

  • Kurita O, Sago T, Umetani K, Kokean Y, Yamaoka C, Takahashi N, Iwamoto H (2017) Feasible protein aggregation of phosphorylated poly-γ-glutamic acid derivative from Bacillus subtilis (natto). Int J Biol Macromol 103:484–492

    Article  CAS  PubMed  Google Scholar 

  • Matsusaki M, Serizawa T, Kishida A, Endo T, Akashi M (2002) Novel functional biodegradable polymer: syntheesis and anticoagulant activity of poly (γ-glutamic acid) sulfonate (γ-PGA-sulfonate). Bioconjug Chem 13:23–28

    Article  CAS  PubMed  Google Scholar 

  • Meuzelaar H, Tros M, Viga AH, van Dijk CN, Vreede J, Woutersen S (2014) Solvent-exposed salt bridges influence the kinetics of α-helix folding and unfolding. J Phys Chem Lett 5:900–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes LP, Brito PN, Alergre RM (2013) The exsisting studies on biosynthesis of poly (γ-glutamic acid) by fermentation. Food Pub Health 3:28–36

    Google Scholar 

  • Nishi Y, Uchiyama S, Doi M, Nishiuchi Y, Nakazawa T, Ohkubo T, Kobayashi Y (2005) Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix. Biochemistry 44:6034–6042

    Article  CAS  PubMed  Google Scholar 

  • Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I (2015) Poly-γ-glutamic acid: production, properties and applications. Microbiology 161:1–17

    Article  CAS  PubMed  Google Scholar 

  • Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripaś AF, Gilmanshin RI (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128

    Article  CAS  PubMed  Google Scholar 

  • Shih IL, Van YT (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Biores Technol 79:207–225

    Article  CAS  Google Scholar 

  • Suzuki T, Tahara Y (2003) Characterization of the Bacillus subtilis ywtD gene, whose product is involved in γ-polyglutamic acid degradation. J Bacteriol 185:2379–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano K, Tsuchimori K, Yamagata Y, Yutani K (2000) Contribution of salt bridges near the surface of a protein to the conformational stability. Biochemistry 39:12375–12381

    Article  CAS  PubMed  Google Scholar 

  • Tiffany ML, Krimm S (1968) New chain conformation of poly (glutamic acid) and poly lysine. Biopolymers 6:1379–1382

    Article  CAS  PubMed  Google Scholar 

  • Timpl R, Martin GR, Bruckner P, Wick G, Wiedemann H (1978) Nature of the collagenous protein in a tumor basement membrane. Eur J Biochem 84:43–52

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Tian G, Ji Z, Chen S (2015) A new strategy for enhancement of poly-γ-glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. J Chem Technol Biotechnol 90:709–713

    Article  CAS  Google Scholar 

  • Zhu Y, Huang W, Lee SSK, Xu W (2005) Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis. EMBO Rep 6:681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Shaun O’Brien for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Kurita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurita, O., Umetani, K., Kokean, Y. et al. Regulatory phosphorylation of poly-γ-glutamic acid with phosphate salts in the culture of Bacillus subtilis (natto). World J Microbiol Biotechnol 34, 60 (2018). https://doi.org/10.1007/s11274-018-2443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2443-6

Keywords

Navigation