Production of conidia by entomopathogenic fungi: from inoculants to final quality tests

  • Facundo Muñiz-Paredes
  • Francisco Miranda-Hernández
  • Octavio Loera


Demand for biopesticides is growing due to the increase of areas under integrated pest management worldwide. Conidia from entomopathogenic fungi play a major role as infective units in the current market of biopesticides. Success in a massive production of fungal conidia include the use of proper long-term conservation microbial methods, aimed at preserving the phenotypic traits of the strains. The development of suitable inoculants should also be considered since that favours a rapid germination and invasiveness of the substrate in solid state cultures (SSC). After the selection of a suitable fungal strain, proven optimization approaches for SSC mainly include the combination of substrates, moisture, texturizers, aeration and moderate stress to induce conidiation. Nonetheless, during storage and upon application in open fields, conidia either as free propagules or imbibed in formulations are subjected to stress due to abiotic factors, then quality should be preserved to resist such harsh conditions. All of these topics are analysed in this report.


Biological control Conidia quality Conidia production Entomopathogenic fungi market Optimization Suitable inoculants 



The authors thank the National Council for Science and Technology (CONACyT) for the Project CB-2015-254819, and also the Universidad Autónoma Metropolitana (UAM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11274_2017_2229_MOESM1_ESM.pdf (60 kb)
Supplementary material 1 (PDF 59 KB)


  1. Ali S, Huang Z, Li H, Bashir MH, Ren S (2013) Antioxidant enzyme influences germination, stress tolerance, and virulence of Isaria fumosorosea. J Basic Microbiol 53:489–497. doi: 10.1002/jobm.201100645 CrossRefGoogle Scholar
  2. Amin L, Zainol ZA, Rusly NS, Akpoviri F, Sidik NM (2011) Risk assessment of genetically modified organisms (GMOs). Afr J Biotechnol 58:12418–12424. doi: 10.5897/AJB11.1063 Google Scholar
  3. Angel-Cuapio A, Figueroa-Montero A, Favela-Torres E, Viniegra-Gonzalez G, Perraud-Gaime I, Loera O (2015) Critical values of porosity in rice cultures of Isaria fumosorosea by adding water hyacinth: effect on conidial yields and quality. Appl Biochem Biotechnol 177:446–457. doi: 10.1007/s12010-015-1754-4 CrossRefGoogle Scholar
  4. Ansari MA, Butt TM (2011) Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi. J Appl Microbiol 110:1460–1469. doi: 10.1111/j.1365-2672.2011.04994.x CrossRefGoogle Scholar
  5. Arzumanov T, Jenkins N, Roussos S (2005) Effect of aeration and substrate moisture content on sporulation of Metarhizium anisopliae var. acridum. Process Biochem 40:1037–1042. doi: 10.1016/j.procbio.2004.03.013 CrossRefGoogle Scholar
  6. Behle RW, Garcia-Gutierrez C, Tamez-Guerra P, McGuire MR, Jackson MA (2006) Pathogenicity of blastospores and conidia of Paecilomyces fumosoroseus against larvae of the Mexican bean beetle, Epilachna varivestis Mulsant. Southwest Entomol 31:289–295Google Scholar
  7. Boas AMV, Andrade RM, Oliveira JV (1996) Diversification of culture media for production of entomopathogenic fungi. Arq Biol Technol 39:123–128Google Scholar
  8. Borisade OA, Magan N (2014) Growth and sporulation of entomopathogenic Beauveria bassiana, Metarhizium anisopliae, Isaria farinosa and Isaria fumosorosea strains in relation to water activity and temperature interactions. Biocontrol Sci Technol 24:999–1011. doi: 10.1080/09583157.2014.909007 CrossRefGoogle Scholar
  9. Butt TM, Wang C, Shah FA, Hall R (2006) Degeneration of entomopathogenous fungi. In: Eilenberg J, Hokkanen HMT (eds) An ecological and societal approach to biological control. Springer, Netherlands, pp 213–226CrossRefGoogle Scholar
  10. Chantasingh D, Kitikhun S, Keyhani NO, Boonyapakron K, Thoetkiattikul H, Pootanakit K, Eurwilaichitr L (2013) Identification of catalase as an early up-regulated gene in Beauveria bassiana and its role in entomopathogenic fungal virulence. Biol Control 67:85–93. doi: 10.1016/j.biocontrol.2013.08.004 CrossRefGoogle Scholar
  11. Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol 54:67–75. doi: 10.1016/j.femsec.2005.02.013 CrossRefGoogle Scholar
  12. Dalla Santa HS, Sousa NJ, Brand D, Dalla Santa OR, Pandey A, Sobotka M, Paca J, Soccol CR (2004) Conidia production of Beauveria sp. by solid-state fermentation for biocontrol of Ilex paraguariensis caterpillars. Folia Microbiol 49:418–422CrossRefGoogle Scholar
  13. Dalla Santa HS, Dalla Santa OR, Brand D, Vandenberghe LPD Soccol CR (2005) Spore production of Beauveria bassiana from agro-industrial residues. Braz Arch Biol Technol 48:51–60. doi: 10.1590/S1516-89132005000400007 CrossRefGoogle Scholar
  14. de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256. doi: 10.1016/j.biocontrol.2007.08.001 CrossRefGoogle Scholar
  15. Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJS, Pei Y (2009) Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol 102:155–159. doi: 10.1016/j.jip.2009.07.013 CrossRefGoogle Scholar
  16. FAO (2003) Weighing the GMO arguments: against. FAO. Accessed 22 Sept 2016
  17. Farrar JJ, Baur ME, Elliott S (2015) Adoption and impacts of integrated pest management in agriculture in the western United States. Western IPM Center. Accessed 6 Oct 2016
  18. Fernandes ÉKK, Rangel DEN, Braga GUL, Roberts DW (2015) Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Curr Genet 61:427–440. doi: 10.1007/s00294-015-0492-z CrossRefGoogle Scholar
  19. Hallsworth JE, Magan N (1996) Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435–2442Google Scholar
  20. Herrero-Garcia E, Garzia A, Codobés S, Espeso EA, Ugalde U (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol 115:393–400. doi: 10.1016/j.funbio.2011.02.005 CrossRefGoogle Scholar
  21. Hussain A, Tian MY, He YR, Ruan L, Ahmed S (2010) In vitro and in vivo culturing impacts on the virulence characteristics of serially passed entomopathogenic fungi. J Food Agr Environ 8:481–487Google Scholar
  22. Jenkins NE, Heviefo G, Langewald J, Cherry AJ, Lomer CJ (1998) Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News Inf 19:21N–31NGoogle Scholar
  23. Kim JJ, Xie L, Han JH, Lee SY (2014a) Influence of additives on the yield and pathogenicity of conidia produced by solid state cultivation of an Isaria javanica isolate. Mycobiology 42:346–352. doi: 10.5941/MYCO.2014.42.4.346 CrossRefGoogle Scholar
  24. Kim SY, Kim KH, Im CH, Lee CY, Kong WS, Ryu JS (2014b) Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes. PLoS ONE. doi: 10.1371/journal.pone.0107207 Google Scholar
  25. Kooyman C, Godonou I (1997) Infection of Schistocerca gregaria (Orthoptera: Acrididae) hoppers by Metarhizium flavoviride (Deuteromycotina: Hyphomycetes) conidia in an oil formulation applied under desert conditions. Bull Entomol Res 87:105–107CrossRefGoogle Scholar
  26. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30. doi: 10.1080/07388550590925383 CrossRefGoogle Scholar
  27. Li L, Pischetsrieder M, St. Leger RJ, Wang C (2008) Associated links among mtDNA glycation, oxidative stress and colony sectorization in Metarhizium anisopliae. Fugal Genet Biol 45:1300–1306. doi: 10.1016/j.fgb.2008.06.003 CrossRefGoogle Scholar
  28. Li L, Hu X, Xia Y, Xiao G, Zheng P, Wang C (2014) Linkage of oxidative stress and mitochondrial dysfunctions to spontaneous culture degeneration in Aspergillus nidulans. Mol Cell Proteom 13:449–461. doi: 10.1074/mcp.M113.028480 CrossRefGoogle Scholar
  29. Liao X, Lu HL, Fang W, St Leger RJ (2014) Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl Microbiol Biotechnol 98:777–783. doi: 10.1007/s00253-013-5360-5 CrossRefGoogle Scholar
  30. Liu H, Wang P, Hu Y, Zhao G, Liu H, Li Z, Wu H, Wang L, Zheng Z (2015) Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production. Biocontrol Sci Technol 25:1011–1023. doi: 10.1080/09583157.2015.1025701 CrossRefGoogle Scholar
  31. Lopez-Perez M, Rodriguez-Gomez D, Loera O (2015) Production of conidia of Beauveria bassiana in solid-state culture: current status and future perspectives. Crit Rev Biotechnol 35(3):334–341. doi: 10.3109/07388551.2013.857293 CrossRefGoogle Scholar
  32. Luangsa-Ard J, Houbraken J, van Doom T, Hong SB, Borman AM, Hywel-Jones NL, Samson RA (2011) Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Lett 321:141–149. doi: 10.1111/j.1574-6968.2011.02322.x CrossRefGoogle Scholar
  33. Mar TT, Suwannarach N, Lumyong S (2012) Isolation of entomopathogenic fungi from Northern Thailand and their production in cereal grains. World J Microb Biot 28:3281–3291. doi: 10.1007/s11274-012-1139-6 CrossRefGoogle Scholar
  34. MarketsAndMarkets (2015) Biopesticides market by type (bioinsecticides, biofungicides, bioherbicides, and bionematicides), origin (beneficial insects, microbials, and biochemical), mode of application, formulation, crop type & region—Global forecast to 2020. MarketsAndMarkets. Accessed 10 Oct 2016
  35. Marshall MA, Timberlake WE (1991) Asperillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 11:55–62. doi: 10.1128/EC.00220-13 CrossRefGoogle Scholar
  36. Mascarin GM, Alves SB, Lopes RB (2010) Culture media selection for mass production of Isaria fumosorosea and Isaria farinosa. Braz Arch Biol Technol 53:753–761. doi: 10.1590/S1516-89132010000400002 CrossRefGoogle Scholar
  37. Méndez-González F, Loera O, Favela-Torres E (2017) Conidia production of Metarhizium anisopliae in bags and packed column bioreactors. Curr Biotechnol 5:1–5. doi: 10.2174/2211550105666160926123350 Google Scholar
  38. Miranda-Hernández F, Saucedo-Castaneda G, Alatorre-Rosas R, Loera O (2014) Oxygen-rich culture conditions enhance the conidial infectivity and the quality of two strains of Isaria fumosorosea for potentially improved biocontrol processes. Pest Manag Sci 70:661–666. doi: 10.1002/ps.3605 CrossRefGoogle Scholar
  39. Miranda-Hernández F, Garza-López PM, Loera O (2016) Cellular signaling in cross protection: an alternative to improve mycopesticides. Biol Control 103:196–203. doi: 10.1016/j.biocontrol.2016.09.007 CrossRefGoogle Scholar
  40. Muñiz-Paredes FR, Loera O (2016) The importance of strong inocula in fungal cultures. Mex. J Biotechnol 1(1):120–134Google Scholar
  41. Muñiz-Paredes F, Garza-López PM, Viniegra-González G, Loera O (2016) Comparison between superficial and solid-state cultures of Isaria fumosorosea: conidial yields, quality and sensitivity to oxidant conditions. World J Microb Biot 32:111. doi: 10.1007/s11274-016-2072-x CrossRefGoogle Scholar
  42. Nagaraju J, Gopinath G, Sharma V, Shukla JN (2014) Lepidopteran sex determination: a cascade of surprises. Sex Dev 8:104–112. doi: 10.1159/000357483 CrossRefGoogle Scholar
  43. Nemčovič M, Jakubíková L, Víden I, Farkaš V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236. doi: 10.1111/j.1574-6968.2008.01202.x CrossRefGoogle Scholar
  44. Nuñez-Gaona O, Saucedo-Castañeda G, Alatorre-Rosas R, Loera O (2010) Effect of moisture content and inoculum on the growth and conidia production by Beauveria bassiana on wheat bran. Braz Arch Biol Technol 53:771–777. doi: 10.1590/S1516-89132010000400004 CrossRefGoogle Scholar
  45. Ortiz-Urquiza A, Luo Z, Keyhani NO (2015) Improving mycoinsecticides for insect biological control. Appl Microbiol Biotechnol 99:1057–1068. doi: 10.1007/s00253-014-6270-x CrossRefGoogle Scholar
  46. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. doi: 10.1016/S1369-703X(02)00121-3 CrossRefGoogle Scholar
  47. Pham TA, Kim JJ, Kim K (2010) Optimization of solid-state fermentation for improved conidia production of Beauveria bassiana as a mycoinsecticide. Mycobiology 38:137–143. doi: 10.4489/MYCO.2010.38.2.137 CrossRefGoogle Scholar
  48. Prakash GVSB, Padmaja V, Kiran RRS (2008) Statistical, optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresource Technol 99:1530–1537. doi: 10.1016/j.biortech.2007.04.031 CrossRefGoogle Scholar
  49. Pretty J, Bharucha ZP (2015) Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6:152–182. doi: 10.3390/insects6010152 CrossRefGoogle Scholar
  50. Quesada-Moraga F, Vey A (2003) Intra-specific variation in virulence and in vitro production of macromolecular toxins active against locust among Beauveria bassiana strains and effects of in vivo and in vitro passage on these factors. Biocontrol Sci Technol 13:323–340. doi: 10.1080/0958315031000110346 CrossRefGoogle Scholar
  51. Rangel DEN (2011) Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microb Biot 27:1281–1296. doi: 10.1007/s11274-010-0584-3 CrossRefGoogle Scholar
  52. Rangel DEN, Anderson AJ, Roberts DW (2008) Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycol Res 112:1362–1372. doi: 10.1016/j.mycres.2008.04.013 CrossRefGoogle Scholar
  53. Roberts DW, Campbell AS (1977) Stability of entomopathogenic fungi. Misc Publ Entomol Soc Am 10:19–76Google Scholar
  54. Ryan MJ, Bridge PD, Smith D, Jeffries P (2002) Phenotypic degeneration occurs during sector formation in Metarhizium anisopliae. J Appl Microbiol 93:163–168. doi: 10.1046/j.1365-2672.2002.01682.x CrossRefGoogle Scholar
  55. Safavi SA (2012) Attenuation of the entomopathogenic fungus Beauveria bassiana following serial in vitro transfers. Biologia 67:1062–1068. doi: 10.2478/s11756-012-0120-z CrossRefGoogle Scholar
  56. Sahayaraj K, Namasivayam SKR (2008) Mass production of entomopathogenic fungi using agricultural products and by products. Afr J Biotechnol 7:1907–1910CrossRefGoogle Scholar
  57. Sallam MN (1999) Insect damage. INPhO-Post-harvest Compendium. Accessed 6 Oct 2016
  58. Santoro PH, Zozettti J, Constanski K, Neves PMOJ (2014) Conidial production, virulence and stress tolerance of Beauveria bassiana conidia after successive in vitro subculturing. Rev Colomb Entomol 40:85–90.Google Scholar
  59. Sewall TC, Mims CW, Timberlake WE (1990) Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev Biol 138:499–508. doi: 10.1016/0012-1606(90)90215-5 CrossRefGoogle Scholar
  60. Shah FA, Wang CS, Butt TM (2005) Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:259–266. doi: 10.1016/j.femsle.2005.08.010 CrossRefGoogle Scholar
  61. Smith C, Edgington S (2011) Germination at different water activities of similarly aged Metarhizium conidia harvested from ageing cultures. J Stored Prod Res 47:157–160. doi: 10.1016/j.jspr.2011.01.007 CrossRefGoogle Scholar
  62. Son H, Kim MG, Min K, Lim JY, Choi G, Kim JC, Chae SK, Lee YW (2014) WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus Fusarium graminearum. Eukaryot Cell 13:87–98. doi: 10.1128/EC.00220-13 CrossRefGoogle Scholar
  63. Taylor B, Edgington S, Luke B, Moore D (2013) Yield and germination of the entomopathogenic fungus Beauveria bassiana when grown on different rice preparations. J Stored Prod Res 53:23–26. doi: 10.1016/j.jspr.2013.02.004 CrossRefGoogle Scholar
  64. Thaochan N, Chandrapatya A (2016) The phenotypic and metabolic properties of Metarhizium guizhouense on Corcyra cephalonica. Mycosphere 7:214–225. doi: 10.5943/mycosphere/7/2/10 Google Scholar
  65. The BioAg Allience (2016) Fact sheet on the BioAg allience. Monsanto/novozymes. Accessed 10 Oct 2016
  66. Thomas MB, Jenkins NE (1997) Effects of temperature on growth of Metarhizium flavoviride and virulence to the variegated grasshopper, Zonocerus variegatus. Mycol Res 101:1469–1474. doi: 10.1017/S0953756297004401 CrossRefGoogle Scholar
  67. USDA organic regulations (2016) National Organic Program. USDA. Accessed 10 Oct 2016
  68. Wang C, Butt TM, St Leger RJ (2005) Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology 151:3223–3236. doi: 10.1099/mic.0.28148-0 CrossRefGoogle Scholar
  69. Wang YB, Yang ZH, Yu JJ, Zhang YA, Xue JJ, Zheng L, Li JJ, Wang CY, Wang Z, Hou JG, Begum S, Gu LJ, Lee MR, Sung CK (2013) Comparison between conidia and blastospores of Esteya vermicola, and endoparasitic fungus of the pinewood nematode, Bursaphelenchus xylophilus. World J Microb Biot 29:2429–2436. doi: 10.1007/s11274-013-1433-y CrossRefGoogle Scholar
  70. Xie L, Hongmei C, Yang J (2013) Conidia production by Beauveria bassiana on rice in solid-state fermentation using tray bioreactor. Adv Mat Res 610–613:3478–3482. doi: 10.4028/ CrossRefGoogle Scholar
  71. Xie L, Han JH, Kim JJ, Lee SY (2016) Effects of culture conditions on conidial production of the sweet potato whitefly pathogenic fungus Isaria javanica. Mycoscience 57:64–70. doi: 10.1016/j.myc.2015.09.002 CrossRefGoogle Scholar
  72. Yanagawa A, Imai T, Akino T, Toh Y, Yoshimura T (2015) Olfactory cues from pathogenic fungus affect the direction of motion of termites, Coptotermes formosanus. J Chem Ecol 41:1118–1126. doi: 10.1007/s10886-015-0649-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana IztapalapaMexico CityMexico

Personalised recommendations