Skip to main content

Advertisement

Log in

Progress and perspectives on improving butanol tolerance

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fermentative production of butanol for use as a biofuel or chemical feedstock is regarded as a promising renewable technology that reduces greenhouse gas emissions and has the potential to become a substitute for non-sustainable chemical production route. However, butanol toxicity to the producing microbes remains a barrier to achieving sufficiently high titers for cost-effective butanol fermentation and recovery. Investigations of the external stress of high butanol concentration on butanol-producing microbial strains will aid in developing improved microbes with increased tolerance to butanol. With currently available molecular tool boxes, researchers have aimed to address and understand how butanol affects different microbes. This review will cover the individual organism’s inherent responses to surrounding butanol levels, and the collective efforts by researchers to improve production and tolerance. The specific microorganisms discussed here include the native butanol producer Clostridium species, the fermentation industrial model Saccharomyces cerevisiae and the photosynthetic cyanobacteria, the genetic engineering workhorse Escherichia coli, and also the butanol-tolerant lactic acid bacteria that utilize diverse substrates. The discussion will help to understand the physiology of butanol resistance and to identify specific butanol tolerance genes that will lead to informed genetic engineering strategies for new strain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  CAS  Google Scholar 

  • Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87:635–646

    Article  CAS  Google Scholar 

  • Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73:3061–3068

    Article  CAS  Google Scholar 

  • Bramucci MG (2015) Yeast with increased butanol tolerance involving cell wall proteins. WIPO/PCT WO 2015/009601 AI

  • Fisher MA, Boyarskiy S, Yamada MR, Kong N, Bauer S, Tullman-Ercek D (2014) Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth Biol 3:30–40

    Article  CAS  Google Scholar 

  • Garza E, Zhao J, Wang Y, Wang J, Iverson A, Manow R, Finan C, Zhou S (2012) Engineering a homobutanol fermentation pathway in Escherichia coli EG03. J Ind Microbiol Biotechnol 39:1101–1107

    Article  CAS  Google Scholar 

  • Gi Moon H, Jang YS, Cho C, Lee J, Binkley R, Lee SY (2016) One hundred years of clostridial butanol fermentation. FEMS Microbiol Lett 363:1–15

    Google Scholar 

  • Hinks J, Wang Y, Matysik A, Kraut R, Kjelleberg S, Mu Y, Bazan GC, Wuertz S, Seviour T (2015) Increased microbial butanol tolerance by exogenous membrane insertion molecules. ChemSusChem 8:3718–3726

    Article  CAS  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  Google Scholar 

  • Kaczmarzyk D, Anfelt J, Sarnegrim A, Hudson EP (2014) Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803. J Biotechnol 182–183:54–60

    Article  Google Scholar 

  • Knoshaug EP, Zhang M (2008) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20

    Article  Google Scholar 

  • Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 109:6018–6023

    Article  CAS  Google Scholar 

  • Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    Article  CAS  Google Scholar 

  • Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6:2672–2681

    Article  CAS  Google Scholar 

  • Lee SH, Kim S, Kim JY, Cheong NY, Kim KH (2016) Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol. Bioresour Technol 218:909–917

    Article  CAS  Google Scholar 

  • Li J, Zhao JB, Zhao M, Yang YL, Jiang WH, Yang S (2010) Screening and characterization of butanol-tolerant micro-organisms. Lett Appl Microbiol 50:373–379

    Article  CAS  Google Scholar 

  • Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. N Biotechnol 26:117–121

    Article  CAS  Google Scholar 

  • Liu S, Bischoff KM, Qureshi N, Hughes SR, Rich JO (2010) Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri. N Biotechnol 27:283–288

    Article  Google Scholar 

  • Liu S, Bischoff KM, Leathers TD, Qureshi N, Rich JO, Hughes SR (2012) Adaptation of lactic acid bacteria to butanol. Biocatal Agric Biotechnol 1:57–61

    CAS  Google Scholar 

  • Liu XB, Gu QY, Yu XB, Luo W (2013a) Enhancement of butanol tolerance and butanol yield in Clostridium acetobutylicum mutant NT642 obtained by nitrogen ion beam implantation. J Microbiol 50:1024–1028

    Article  Google Scholar 

  • Liu XB, Gu QY, Yu XB (2013b) Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. Bioresour Technol 130:638–643

    Article  CAS  Google Scholar 

  • Lutke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647

    Article  Google Scholar 

  • Niu X, Zhu Y, Pei G, Wu L, Chen L, Zhang W (2015) Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. Appl Microbiol Biotechnol 99:1845–1857

    Article  CAS  Google Scholar 

  • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429

    Article  CAS  Google Scholar 

  • Qureshi N, Blaschek HP (2000) Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl Biochem Biotechnol 84–86:225–235

    Article  Google Scholar 

  • Reyes LH, Almario MP, Winkler J, Orozco MM, Kao KC (2012) Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metab Eng 14:579–590

    Article  CAS  Google Scholar 

  • Reyes LH, Abdelaal AS, Kao KC (2013) Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Appl Environ Microbiol 79:5313–5320

    Article  CAS  Google Scholar 

  • Ruhl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656

    Article  Google Scholar 

  • Schadeweg V, Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44

    Article  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Met Eng 10:312–320

    Article  CAS  Google Scholar 

  • Si HM, Zhang F, Wu AN, Han RZ, Xu GC, Ni Y (2016) DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. Biotechnol Biofuels 9:114

    Article  Google Scholar 

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36

    Article  Google Scholar 

  • Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W (2014) Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Fact 13:151

    Article  Google Scholar 

  • Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6:106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tabitha Morton and Eric Hoecker for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqing Liu.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Qureshi, N. & Hughes, S.R. Progress and perspectives on improving butanol tolerance. World J Microbiol Biotechnol 33, 51 (2017). https://doi.org/10.1007/s11274-017-2220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2220-y

Keywords

Navigation