Advertisement

Progress and perspectives on improving butanol tolerance

Review

Abstract

Fermentative production of butanol for use as a biofuel or chemical feedstock is regarded as a promising renewable technology that reduces greenhouse gas emissions and has the potential to become a substitute for non-sustainable chemical production route. However, butanol toxicity to the producing microbes remains a barrier to achieving sufficiently high titers for cost-effective butanol fermentation and recovery. Investigations of the external stress of high butanol concentration on butanol-producing microbial strains will aid in developing improved microbes with increased tolerance to butanol. With currently available molecular tool boxes, researchers have aimed to address and understand how butanol affects different microbes. This review will cover the individual organism’s inherent responses to surrounding butanol levels, and the collective efforts by researchers to improve production and tolerance. The specific microorganisms discussed here include the native butanol producer Clostridium species, the fermentation industrial model Saccharomyces cerevisiae and the photosynthetic cyanobacteria, the genetic engineering workhorse Escherichia coli, and also the butanol-tolerant lactic acid bacteria that utilize diverse substrates. The discussion will help to understand the physiology of butanol resistance and to identify specific butanol tolerance genes that will lead to informed genetic engineering strategies for new strain development.

Keywords

Butanol Tolerance Fermentation Strain development 

Notes

Acknowledgements

We thank Tabitha Morton and Eric Hoecker for their excellent technical assistance.

References

  1. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311CrossRefGoogle Scholar
  2. Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87:635–646CrossRefGoogle Scholar
  3. Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73:3061–3068CrossRefGoogle Scholar
  4. Bramucci MG (2015) Yeast with increased butanol tolerance involving cell wall proteins. WIPO/PCT WO 2015/009601 AIGoogle Scholar
  5. Fisher MA, Boyarskiy S, Yamada MR, Kong N, Bauer S, Tullman-Ercek D (2014) Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth Biol 3:30–40CrossRefGoogle Scholar
  6. Garza E, Zhao J, Wang Y, Wang J, Iverson A, Manow R, Finan C, Zhou S (2012) Engineering a homobutanol fermentation pathway in Escherichia coli EG03. J Ind Microbiol Biotechnol 39:1101–1107CrossRefGoogle Scholar
  7. Gi Moon H, Jang YS, Cho C, Lee J, Binkley R, Lee SY (2016) One hundred years of clostridial butanol fermentation. FEMS Microbiol Lett 363:1–15Google Scholar
  8. Hinks J, Wang Y, Matysik A, Kraut R, Kjelleberg S, Mu Y, Bazan GC, Wuertz S, Seviour T (2015) Increased microbial butanol tolerance by exogenous membrane insertion molecules. ChemSusChem 8:3718–3726CrossRefGoogle Scholar
  9. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524Google Scholar
  10. Kaczmarzyk D, Anfelt J, Sarnegrim A, Hudson EP (2014) Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803. J Biotechnol 182–183:54–60CrossRefGoogle Scholar
  11. Knoshaug EP, Zhang M (2008) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20CrossRefGoogle Scholar
  12. Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 109:6018–6023CrossRefGoogle Scholar
  13. Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349CrossRefGoogle Scholar
  14. Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6:2672–2681CrossRefGoogle Scholar
  15. Lee SH, Kim S, Kim JY, Cheong NY, Kim KH (2016) Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol. Bioresour Technol 218:909–917CrossRefGoogle Scholar
  16. Li J, Zhao JB, Zhao M, Yang YL, Jiang WH, Yang S (2010) Screening and characterization of butanol-tolerant micro-organisms. Lett Appl Microbiol 50:373–379CrossRefGoogle Scholar
  17. Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. N Biotechnol 26:117–121CrossRefGoogle Scholar
  18. Liu S, Bischoff KM, Qureshi N, Hughes SR, Rich JO (2010) Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri. N Biotechnol 27:283–288CrossRefGoogle Scholar
  19. Liu S, Bischoff KM, Leathers TD, Qureshi N, Rich JO, Hughes SR (2012) Adaptation of lactic acid bacteria to butanol. Biocatal Agric Biotechnol 1:57–61Google Scholar
  20. Liu XB, Gu QY, Yu XB, Luo W (2013a) Enhancement of butanol tolerance and butanol yield in Clostridium acetobutylicum mutant NT642 obtained by nitrogen ion beam implantation. J Microbiol 50:1024–1028CrossRefGoogle Scholar
  21. Liu XB, Gu QY, Yu XB (2013b) Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. Bioresour Technol 130:638–643CrossRefGoogle Scholar
  22. Lutke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647CrossRefGoogle Scholar
  23. Niu X, Zhu Y, Pei G, Wu L, Chen L, Zhang W (2015) Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. Appl Microbiol Biotechnol 99:1845–1857CrossRefGoogle Scholar
  24. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429CrossRefGoogle Scholar
  25. Qureshi N, Blaschek HP (2000) Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl Biochem Biotechnol 84–86:225–235CrossRefGoogle Scholar
  26. Reyes LH, Almario MP, Winkler J, Orozco MM, Kao KC (2012) Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metab Eng 14:579–590CrossRefGoogle Scholar
  27. Reyes LH, Abdelaal AS, Kao KC (2013) Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Appl Environ Microbiol 79:5313–5320CrossRefGoogle Scholar
  28. Ruhl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656CrossRefGoogle Scholar
  29. Schadeweg V, Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44CrossRefGoogle Scholar
  30. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Met Eng 10:312–320CrossRefGoogle Scholar
  31. Si HM, Zhang F, Wu AN, Han RZ, Xu GC, Ni Y (2016) DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. Biotechnol Biofuels 9:114CrossRefGoogle Scholar
  32. Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36CrossRefGoogle Scholar
  33. Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W (2014) Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Fact 13:151CrossRefGoogle Scholar
  34. Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6:106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2017

Authors and Affiliations

  1. 1.Renewable Product Technology Research UnitNational Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of AgriculturePeoriaUSA
  2. 2.Bioenergy Research UnitNational Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of AgriculturePeoriaUSA

Personalised recommendations