Advertisement

Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium

  • Ayelén A. Hugo
  • Ivanna S. Rolny
  • David Romanin
  • Pablo F. Pérez
Original Paper
  • 185 Downloads

Abstract

Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

Graphical Abstract

Keywords

Citrobacter rodentium Lactobacilli Macrophages Phagocytosis Probiotics 

Notes

Acknowledgements

Authors are indebted to Thomas Macdonald (Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry London, United Kingdom) for providing C. rodentium strain. A. A. H. P. F. P. and D. R. are researchers of the Consejo Nacional de Investigaciones Científicas y Técnicas CONICET (Argentina), I. R. is a researcher of the Department of Biological Sciences of the Facultad de Ciencias Exactas (Universidad Nacional de La Plata, Argentina). P. F. P. is Professor of Microbiology at the Department of Biological Sciences of the Facultad de Ciencias Exactas (UNLP, Argentina) of the Facultad de Ciencias Exactas (Universidad Nacional de La Plata, Argentina). The present work was partially financed by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), CONICET and Universidad Nacional de La Plata (Argentina).

References

  1. Abràmoff M, Magalhães PJ, Ram SJ (2004) Image processing with image. J Biophotonics Int 11:36–42Google Scholar
  2. Ameziane-El-Hassani R, Dupuy C (2013). Detection of intracellular reactive oxygen species (CM–H2DCFDA). Bio Protoc 3(2):1–5. Google Scholar
  3. Aychek T, Mildner A, Yona S, Kim K, Lampl N, Reich-Zeliger S, Boon L, Yogev N, Waisman A, Cua DJ, Jung S (2015) IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nat Commun 6:6525. doi: 10.1038/ncomms7525.CrossRefGoogle Scholar
  4. Borenshtein D, Fry RC, Groff EB, Nambiar PR, Carey VJ, Fox JG, Schauer, DB (2008) Diarrhea as a cause of mortality in a mouse model of infectious colitis. Genome Biol 9(8):1–19 (article R122)CrossRefGoogle Scholar
  5. Boye L, Welsby I, Lund LD, Goriely S, Frøkiær H (2016) Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β. Immunology 149:329–342CrossRefGoogle Scholar
  6. Bry L, Brenner MB (2004) Critical role of t cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J Immunol 172:433–441CrossRefGoogle Scholar
  7. Chen CC, Louie S, Shi HN, Walker WA (2005) Preinoculation with the probiotic Lactobacillus acidophilus early in life effectively inhibits murine Citrobacter rodentium colitis. Pediatr Res 58(6):1185–1191CrossRefGoogle Scholar
  8. Chen CC, Chiu CH, Lin TY, Shi HN, Walker WA (2009) Effect of probiotics Lactobacillus acidophilus on Citrobacter rodentium colitis: the role of dendritic cells. Pediatr Res 65(2):169–175CrossRefGoogle Scholar
  9. Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB, Frankel G (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 12(9):612–623CrossRefGoogle Scholar
  10. Davidson J, Kerr A, Guy K, Rotondo D (1998) Prostaglandin and fatty acid modulation of Escherichia coli 0157 phagocytosis by human monocytic cells. Immunology 94:228–234CrossRefGoogle Scholar
  11. Dong N, Liu L, Shao F (2010) A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J 29:1363–1376CrossRefGoogle Scholar
  12. Foo NP, Ou Yang H, Chiu HH, Chan HY, Liao CC, Yu CK, Wang YJ (2011) Probiotics prevent the development of 1,2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. J Agric Food Chem 59(24):13337–13345CrossRefGoogle Scholar
  13. Gareau MG, Wine E, Reardon C, Sherman PM (2010) Probiotics prevent death caused by Citrobacter rodentium infection in neonatal mice. J Infect Dis 201:81–91CrossRefGoogle Scholar
  14. Ghaem-Maghami M, Simmons CP, Daniell S, Pizza M, Lewis D, Frankel G, Dougan G (2001) Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium. Infect Immun 69:5597–5605CrossRefGoogle Scholar
  15. Gill HS, Rutherfurd KJ, Cross ML, Gopal PK (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr 74:833–839Google Scholar
  16. Higgins LM, Frankel G, Douce Gill, Dougan G, MacDonald TT (1999) Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease. Infect Immun 67(6):3031–3039Google Scholar
  17. Hugo AA, De Antoni GL, Pérez PF (2006) Lactobacillus delbrueckii subsp. lactis strain CIDCA 133 inhibits nitrate reductase activity of Escherichia coli. Int J Food Microbiol 111:191–196CrossRefGoogle Scholar
  18. Hugo AA, Kakisu EJ, De Antoni GL, Pérez PF (2008) Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro. Lett Appl Microbiol 46:613–619CrossRefGoogle Scholar
  19. Ichikawa S, Miyake M, Fujii R, Konishi Y (2012) MyD88 associated ROS generation is crucial for Lactobacillus induced IL-12 production in macrophage. PLoS One 7(4):e35880CrossRefGoogle Scholar
  20. Jeong JH, Jang S, Jung BJ, Jang KS, Kim BG, Chung DK, Kim H (2015) Differential immune-stimulatory effects of LTAs from different lactic acid bacteria via MAPK signaling pathway in RAW 264.7 cells. Immunobiology 220:460–466CrossRefGoogle Scholar
  21. Johnson-Henry KC, Nadjafi M, Avitzur Y, Mitchell DJ, Ngan BY, Galindo-Mata E, Jones NL, Sherman PM (2005) Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. J Infect Dis 191:2106–2117CrossRefGoogle Scholar
  22. Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA, Lambeth JD, Denning PW, Neish AS (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32:3017–3028CrossRefGoogle Scholar
  23. Kim DW, Cho SB, Yun CH, Jeong HY, Chung WT, Choi CW, Lee HJ, Nam IS, Suh GH, Lee SS, Lee BS (2007) Induction of cytokines and nitric oxide in murine macrophages stimulated with enzymatically digested lactobacillus strains. J Microbiol 45(5):373–378Google Scholar
  24. Korhonen R, Korpela R, Saxelin M, Mäki M, Kankaanranta H, Moilanen E (2001) Induction of nitric oxide synthesis by probiotic Lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epithelial cells. Inflammation 25(4):223–232CrossRefGoogle Scholar
  25. Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, Tzanetakis N, Yiangou M (2010) Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int J Food Microbiol 140:154–163CrossRefGoogle Scholar
  26. Kum WW, Lo BC, Deng W, Ziltener HJ, Finlay BB (2010) Impaired innate immune response and enhanced pathology during Citrobacter rodentium infection in mice lacking functional P-selectin. Cell Microbiol 12(9):1250–1271CrossRefGoogle Scholar
  27. Lebeis SL, Bommarius B, Parkos CA, Sherman MA, Kalman D (2007) TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J Immunol 179(1):566–577CrossRefGoogle Scholar
  28. Lebeis SL, Sherman MA, Kalman D (2008). Protective and destructive innate immune responses to enteropathogenic Escherichia coli and related A/E pathogens. Future Microbiol 3(3):315–328CrossRefGoogle Scholar
  29. Liu Z, Zaki MH, Vogel P, Gurung P, Finlay BB, Deng W, Lamkanfi M, Kanneganti TD (2012) Role of inflammasomes in host defense against Citrobacter rodentium infection. J Biol Chem 287:16955–16964CrossRefGoogle Scholar
  30. Lu T, Porter AR, Kennedy AD, Kobayashi SD, DeLeo FR (2014) Phagocytosis and killing of Staphylococcus aureus by human neutrophils. J Innate Immun 6:639–649CrossRefGoogle Scholar
  31. Luperchio SA, Schauer DB (2001) Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect 3:333–340CrossRefGoogle Scholar
  32. Luperchio SA, Newman JV, Dangler CA, Schrenzel MD, Brenner DJ, Steigerwalt AG, Schauer DB (2000) Citrobacter rodentium the causative agent of transmissible murine colonic hyperplasia, exhibits clonality:synonymy of C. rodentium and mouse-pathogenic Escherichia coli. J Clin Microbiol 38(12):4343–4350Google Scholar
  33. Lupfer CR, Anand PK, Liu Z, Stokes KL, Vogel P, Lamkanfi M, Kanneganti TD (2014) Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLoS Pathogens 10(9):1–14CrossRefGoogle Scholar
  34. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686CrossRefGoogle Scholar
  35. Marranzino G, Villena J, Salva S, Alvarez S (2012) Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestinal tract. Microbiol Immunol 56(11):771–781CrossRefGoogle Scholar
  36. McNamara AL, Meeker GB, Shaw PD, Hageman RH (1971) Use of dissimilatory nitrate reductase from Escherichia coli and formate as a reductive system for nitrate assays. J Agric Food Chem 19:229–231CrossRefGoogle Scholar
  37. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S (2005) Citrobacter rodentium of mice and man. Cell Microbiol 7:1697–1706CrossRefGoogle Scholar
  38. Pircalabioru G, Aviello G, Kubica M, Zhdanov A, Paclet MH, Brennan L, Hertzberger R, Papkovsky D, Bourke B, Knaus UG (2016). Defensive mutualism rescues NADPH oxidase inactivation in gut infection. Cell Host Microbe 19:651–663CrossRefGoogle Scholar
  39. Rasband WS (1997) ImageJ at http://imagej.nih.gov/ij/
  40. Rodrigues DM, Sousa AJ, Johnson-Henry KC, Sherman PM, Gareau MG (2012) Probiotics are effective for the prevention and treatment of Citrobacter rodentium-induced colitis in mice. J Infect Dis 206(1):99–109CrossRefGoogle Scholar
  41. Schiffrin E, Brassart D, Servin A, Rochat F, Donnet-Hughes A (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 66:5155–5205Google Scholar
  42. Schreiber HA, Loschko J, Karssemeijer RA, Escolano A, Meredith MM, Mucida D, Guermonprez P, Nussenzweig MC (2013) Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med 210(10):2025–2039CrossRefGoogle Scholar
  43. Simmons CP, Goncalves NS, Ghaem-Maghami M, Bajaj-Elliott M, Clare S, Neves B, Frankel G, Dougan G, MacDonald TT (2002) Impaired resistance and enhanced pathology during infection with a non-invasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-γ. J Immunol 168(4):1804–1812CrossRefGoogle Scholar
  44. Simmons CP, Clare S, Ghaem-Maghami M, Uren TK, Rankin J, Huett A, Goldin R, Lewis DJ, MacDonald TT, Strugnell RA, Frankel G, Dougan G (2003) Central role for B lymphocytes and CD4-T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun 71(9):5077–5086CrossRefGoogle Scholar
  45. Symonds EL, O’Mahony D, Lapthorne S, O’Mahon L, Shanahan F (2009) Involvement of T helper type 17 and regulatory T cell activity in Citrobacter rodentium invasion and inflammatory damage. Clin Exp Immunol 157(1):148–154CrossRefGoogle Scholar
  46. Tejada-Simon MV, Pestka J (1999) Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot 62(12):1435–1444CrossRefGoogle Scholar
  47. Vallance BA, Deng W, De Grado M, Chan C, Jacobson K, Finlay BB (2002a) Modulation of inducible nitric oxide synthase expression by the attaching and effacing bacterial pathogen Citrobacter rodentium in infected mice. Infect Immun 70(11):6424–6425CrossRefGoogle Scholar
  48. Vallance BA, Deng W, Knodler LA, Finlay BB (2002b) Mice lacking T and B lymphocytes develop transient colitis and crypt hyperplasia yet suffer impaired bacterial clearance during Citrobacter rodentium infection. Infect Immun 70(4):2070–2081CrossRefGoogle Scholar
  49. Vallance BA, Deng W, Jacobson K, Finlay BB (2003) Host susceptibility to the attaching and effacing bacterial pathogen Citrobacter rodentium. Infect Immun 71(6):3443–3453CrossRefGoogle Scholar
  50. Varcoe JJ, Krejcarek G, Busta F, Brady L (2003) Prophylactic feeding of Lactobacillus acidophilus NCFM to mice attenuates overt colonic hyperplasia. J Food Prot 66(3):457–465CrossRefGoogle Scholar
  51. Voyich JM, DeLeo FR (2002) Host-pathogen interactions: leukocyte phagocytosis and associated sequelae. Methods Cell Sci 24:79–90CrossRefGoogle Scholar
  52. Wang Y, Xie J, Wang N, Li Y, Sun X, Zhang Y, Zhang H (2013) Lactobacillus casei Zhang modulate cytokine and Toll-like receptor expression and beneficially regulate poly I: C-induced immune responses in RAW 264.7 macrophages. Microbiol Immunol 57:54–62CrossRefGoogle Scholar
  53. Yoda K, He F, Kawase M, Miyazawa K, Hiramatsu M (2014) Oral administration of Lactobacillus gasseri TMC0356 stimulates peritoneal macrophages and attenuates general symptoms caused by enteropathogenic Escherichia coli infection. J Microbiol Immunol Infect 47(2):81–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ayelén A. Hugo
    • 1
  • Ivanna S. Rolny
    • 1
    • 2
  • David Romanin
    • 3
  • Pablo F. Pérez
    • 1
    • 2
  1. 1.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-CCT La PlataLa PlataArgentina
  2. 2.Cátedra de Microbiología, Facultad de Ciencias Exactas (FCE)UNLPLa PlataArgentina
  3. 3.Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), FCEUNLPLa PlataArgentina

Personalised recommendations