Advertisement

Survival strategies of Escherichia coli and Vibrio spp.: contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments

REVIEW

Abstract

In their natural ecosystems, bacteria are continuously exposed to changing environmental factors including physicochemical parameters (e.g. temperature, pH, etc.), availability of nutrients as well as interaction(s) with other organisms. To increase their tolerance and survival under adverse conditions, bacteria trigger a number of adaptation mechanisms. One of the well-known adaptation responses of the non-spore-forming bacteria is the acquisition of the viable but non-culturable (VBNC) state. This phenotype is induced by different stress factors (e.g. low temperature) and is characterized by the temporal loss of culturability, which can potentially be restored. Moreover, this response can be combined with the bust and boom strategy, which implies the death of the main population of the stressed cells (or their entry into the VBNC state) upon stress, thus enabling the remaining cells (i.e. residual culturable population) to subsist at the expense of the dead or/and VBNC cells. In this review, we discuss the characteristics of the VBNC state, its biological significance and contribution to bacterial survival.

Keywords

Survival strategy VBNC Bust and boom strategy Resuscitation 

References

  1. Abboudi M, Surget SM, Rontani JF, Sempéré R, Joux F (2008) Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Curr Microbiol 57:412–417. doi: 10.1007/s00284-008-9214-9 CrossRefGoogle Scholar
  2. Abia AL, Ubomba-Jaswa E, Momba MN (2016) Competitive survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in riverbed sediments. Microb Ecol. doi: 10.1007/s00248-016-0784-y Google Scholar
  3. Aertsen A, Michiels CW (2004) Stress and how bacteria cope with death and survival. Crit Rev Microbiol 30:263–273. doi: 10.1080/10408410490884757 CrossRefGoogle Scholar
  4. Albertini MC, Accorsi A, Teodori L, Pierfelici L, Uguccioni F, Rocchi MB, Burattini S, Citterio B (2006) Use of multiparameter analysis for Vibrio alginolyticus viable but nonculturable state determination. Cytometry A 69:260–265. doi: 10.1002/cyto.a.20263 CrossRefGoogle Scholar
  5. Amel BK, Amine B, Amina B (2008) Survival of Vibrio fluvialis in seawater under starvation. Microbiol Res 163:323–328. doi: 10.1016/j.micres.2006.06.006 CrossRefGoogle Scholar
  6. Arana I, Seco C, Epelde K, Muela A, Fernández-Astorga A, Barcina I (2004) Relationships between Escherichia coli cells and the surrounding medium during survival processes. Antonie Van Leeuwenhoek 86:189–199. doi: 10.1023/B:ANTO.0000036146.28808.93 CrossRefGoogle Scholar
  7. Arana I, Orruño M, Pérez-Pascual D, Seco C, Muela A, Barcina I (2007) Inability of Escherichia coli to resuscitate from the viable but nonculturable state. FEMS Microbiol Ecol 62:1–11. doi: 10.1111/j.1574-6941.2007.00362.x CrossRefGoogle Scholar
  8. Arana I, Muela A, Orruño M, Seco C, Garaizabal I, Barcina I (2010) Effect of temperature and starvation upon survival strategies of Pseudomonas fluorescens CHA0: comparison with Escherichia coli. FEMS Microbiol Ecol 74:500–509. doi: 10.1111/j.1574-6941.2010.00979.x CrossRefGoogle Scholar
  9. Armada SP, Farto R, Pérez MJ, Nieto TP (2003) Effect of temperature, salinity and nutrient content on the survival responses of Vibrio splendidus biotype I. Microbiology 149:369–375. doi: 10.1099/mic.0.25574-0 CrossRefGoogle Scholar
  10. Asakura H, Ishiwa A, Arakawa E, Makino S, Okada Y, Yamamoto S, Igimi S (2007) Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ Microbiol 9:869–879. doi: 10.1111/j.1462-2920.2006.01206.x CrossRefGoogle Scholar
  11. Banin E, Vassilakos D, Orr E, Martinez J, Rosenberg E (2003) Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr Microbiol 46:418–422. doi: 10.1007/s00284-002-3912-5 CrossRefGoogle Scholar
  12. Barcina I, Arana I (2009) The viable but nonculturable phenotype, a crossroad in the live cycle of non differentiating bacteria? Rev Environ Sci BioTechnol 8:245–255. doi: 10.1007/s11157-009-9159-x CrossRefGoogle Scholar
  13. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443. doi: 10.1099/mic.0.052209-0 CrossRefGoogle Scholar
  14. Bogosian G, Bourneuf EV (2001) A matter of bacterial life and death. EMBO Rep 2:770–774. doi: 10.1093/embo-reports/kve182 CrossRefGoogle Scholar
  15. Chandran A, Mohamed Hatha AA (2005) Relative survival of Escherichia coli and Salmonella typhimurium in a tropical estuary. Water Res 39:1397–1403. doi: 10.1016/j.watres.2005.01.010 CrossRefGoogle Scholar
  16. Colwell RR, Gray DJ (2000) Nonculturable microorganisms in the environment. ASM Press, WashingtonCrossRefGoogle Scholar
  17. Coutard F, Crassous P, Droguet M, Gobin E, Colwell RR, Pommepuy M, Hervio-Heath D (2007) Recovery in culture of viable but nonculturable Vibrio parahaemolyticus: regrowth or resuscitation? ISME J 1:111–120. doi: 10.1038/ismej.2007.1 CrossRefGoogle Scholar
  18. Deller S, Mascher F, Platzer S, Reinthaler FF, Marth E (2006) Effect of solar radiation on survival of indicator bacteria in bathing waters. Cent Eur J Public Health 14:133–137Google Scholar
  19. Du M, Chen J, Zhang X, Li A, Li Y (2007) Characterization and resuscitation of viable but nonculturable Vibrio alginolyticus VIB283. Arch Microbiol 188:283–288. doi: 10.1007/s00203-007-0246-5 CrossRefGoogle Scholar
  20. Falcioni T, Papa S, Campana R, Manti A, Battistelli M, Baffone W (2008) State transitions of Vibrio parahaemolyticus VBNC cells evaluated by flow cytometry. Cytometry B Clin Cytom 74:272–281. doi: 10.1002/cyto.b.20427 CrossRefGoogle Scholar
  21. Hernroth B, Lothigius A, Bölin I (2010) Factors influencing survival of enterotoxigenic Escherichia coli, Salmonella enterica (serovar Typhimurium) and Vibrio parahaemolyticus in marine environments. FEMS Microbiol Ecol 71:272–280. doi: 10.1111/j.1574-6941.2009.00803.x CrossRefGoogle Scholar
  22. Imamura D, Mizuno T, Miyoshi S, Shinoda S (2015) Stepwise changes in viable but nonculturable Vibrio cholerae cells. Microbiol Immunol 59:305–310. doi: 10.1111/1348-0421.12246 CrossRefGoogle Scholar
  23. Jia J, Li Z, Cao J, Jiang Y, Liang C, Liu M (2013) Proteomic analysis of protein expression in the induction of the viable but nonculturable state of Vibrio harveyi SF1. Curr Microbiol 67:442–447. doi: 10.1007/s00284-013-0383-9 CrossRefGoogle Scholar
  24. Jiang XP, Chai JT (1996) Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl Environ Microbiol 62:1300–1305Google Scholar
  25. Kaberdin VR, Montánchez I, Parada C, Orruño M, Arana I, Barcina I (2015) Unveiling the metabolic pathways associated with the adaptive reduction of cell size during Vibrio harveyi persistence in seawater microcosms. Microb Ecol 70:689–700. doi: 10.1007/s00248-015-0614-7 CrossRefGoogle Scholar
  26. Kehoe SC, Barer MR, Devlin LO, McGuigan KG (2004) Batch process solar disinfection is an efficient means of disinfecting drinking water contaminated with Shigella dysenteriae type I. Lett Appl Microbiol 38:410–414. doi: 10.1111/j.1472-765X.2004.01515.x CrossRefGoogle Scholar
  27. Koch AL (1971) The adaptive responses of Escherichia coli to a famine and feast existence. Adv Microb Physiol 6:147–217CrossRefGoogle Scholar
  28. Kong IS, Bates TC, Hülsmann A, Hassan H, Smith BE, Oliver JD (2004) Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol Ecol 50:133–142. doi: 10.1016/j.femsec.2004.06.004 CrossRefGoogle Scholar
  29. Korajkic A, Wanjugi P, Harwood VJ (2013) Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Appl Environ Microbiol 79:5329–5337. doi: 10.1128/AEM.01362-13 CrossRefGoogle Scholar
  30. Krebs SJ, Taylor RK (2011) Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form. Microbiology 157:2942–2953. doi: 10.1099/mic.0.048561-0 CrossRefGoogle Scholar
  31. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. doi: 10.1038/nrmicro2504 CrossRefGoogle Scholar
  32. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278. doi: 10.1146/annurev.physiol.68.040104.110001 CrossRefGoogle Scholar
  33. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258. doi: 10.3389/fmicb.2014.00258 Google Scholar
  34. Liu Y, Wang C, Tyrrell G, Hrudey SE, Li XF (2009) Induction of Escherichia coli O157:H7 into the viable but non-culturable state by chloraminated water and river water, and subsequent resuscitation. Environ Microbiol Rep 1:155–161. doi: 10.1111/j.1758-2229.2009.00024.x CrossRefGoogle Scholar
  35. Lothigius A, Sjöling A, Svennerholm AM, Bölin I (2010) Survival and gene expression of enterotoxigenic Escherichia coli during long-term incubation in sea water and freshwater. J Appl Microbiol 108:1441–1449. doi: 10.1111/j.1365-2672.2009.04548.x CrossRefGoogle Scholar
  36. Makino SI, Kii T, Asakura H, Shirahata T, Ikeda T, Takeshi K, Itoh K (2000) Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but nonculturable state in salted salmon roe? Appl Environ Microbiol 66:5536–5539CrossRefGoogle Scholar
  37. Mendis N, McBride P, Faucher SP (2015) Short-term and long-term survival and virulence of Legionella pneumophila in the defined freshwater medium Fraquil. PLoS ONE 10:e0139277. doi: 10.1371/journal.pone.0139277 CrossRefGoogle Scholar
  38. Montánchez I, Arana I, Parada C, Garaizabal I, Orruño M, Barcina I, Kaberdin VR (2014) Reprogramming of Vibrio harveyi gene expression during adaptation in cold seawater. FEMS Microbiol Ecol 87:193–203. doi: 10.1111/1574-6941.12216 CrossRefGoogle Scholar
  39. Muela A, García-Bringas JM, Seco C, Arana I, Barcina I (2002) Participation of oxygen and role of exogenous and endogenous sensitizers in the photoinactivation of Escherichia coli by photosynthetically active radiation, UV-A and UV-B. Microb Ecol 44:354–364. doi: 10.1007/s00248-002-1027-y CrossRefGoogle Scholar
  40. Munn CB, Marchant HK, Moody AJ (2008) Defences against oxidative stress in vibrios associated with corals. FEMS Microbiol Lett 281:58–63. doi: 10.1111/j.1574-6968.2008.01073.x CrossRefGoogle Scholar
  41. Na SH, Miyanaga K, Unno H, Tanji Y (2006) The survival response of Escherichia coli K12 in a natural environment. Appl Microbiol Biotechnol 72:386–392. doi: 10.1007/s00253-005-0268-3 CrossRefGoogle Scholar
  42. Neidhardt FC (1999) Bacterial growth: constant obsession with dN/dt. J Bacteriol 181:7405–7408Google Scholar
  43. Noble RT, Lee IM, Schiff KC (2004) Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater. J Appl Microbiol 96:464–472CrossRefGoogle Scholar
  44. Nowakowska J, Oliver JD (2013) Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol Ecol 84:213–222. doi: 10.1111/1574-6941.12052 CrossRefGoogle Scholar
  45. Nyström T (2001) Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch Microbiol 176:159–164CrossRefGoogle Scholar
  46. Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425. doi: 10.1111/j.1574-6976.2009.00200.x CrossRefGoogle Scholar
  47. Oliver JD (2016) The viable but nonculturable state for bacteria: status update. Microbe 11:159–164Google Scholar
  48. Parada C, Orruño M, Kaberdin V, Bravo Z, Barcina I, Arana I (2016) Changes in the Vibrio harveyi cell envelope subproteome during permanence in cold seawater. Microb Ecol 72:549–558. doi: 10.1007/s00248-016-0802-0 CrossRefGoogle Scholar
  49. Pienaar JA, Singh A, Barnard TG (2016) The viable but nonculturable state in pathogenic Escherichia coli: a general review. Afr J Lab Med 5:a368. doi: 10.4102/ajlm.v5i1.368 CrossRefGoogle Scholar
  50. Pinto D, Almeida V, Almeida Santos M, Chambel L (2011) Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J Appl Microbiol 110:1601–1611. doi: 10.1111/j.1365-2672.2011.05016.x CrossRefGoogle Scholar
  51. Pinto D, Santos MA, Chambel L (2015) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41:61–76. doi: 10.3109/1040841X.2013.794127 CrossRefGoogle Scholar
  52. Pruzzo C, Tarsi R, Lleo MM, Signoretto C, Zampini M, Pane L, Colwell RR, Canepari P (2003) Persistence of adhesive properties in Vibrio cholerae after long-term exposure to sea water. Environ Microbiol 5:850–858CrossRefGoogle Scholar
  53. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S (2014) Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front. Public Health 2:103. doi: 10.3389/fpubh.2014.00103 Google Scholar
  54. Ramos JL, Gallegos MT, Marqués S, Ramos-González MI, Espinosa-Urgel M, Segura A (2001) Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 4:166–171CrossRefGoogle Scholar
  55. Rao NV, Shashidhar R, Bandekar JR (2014) Induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio vulnificus in artificial sea water. World J Microbiol Biotechnol 30:2205–2212. doi: 10.1007/s11274-014-1640-1 CrossRefGoogle Scholar
  56. Rittershaus ESC, Baek SH, Sassetti CM (2013) The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13:643–651. doi: 10.1016/j.chom.2013.05.012 CrossRefGoogle Scholar
  57. Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379Google Scholar
  58. Rowan NJ (2004) Viable but non-culturable forms of food and waterborne bacteria: quo vadis? Trends Food Sci Tech 15:462–467. doi: 10.1016/j.tifs.2004.02.009 CrossRefGoogle Scholar
  59. Ruiz P, Poblete-Morales M, Irgang R, Toranzo AE, Avendaño-Herrera R (2016) Survival behaviour and virulence of the fish pathogen Vibrio ordalii in seawater microcosms. Dis Aquat Organ 120:27–38. doi: 10.3354/dao03005 CrossRefGoogle Scholar
  60. Sampson RW, Swiatnicki SA, Osinga VL, Supita JL, McDermott CM, Kleinheinz GT (2006) Effects of temperature and sand on E. coli survival in a northern lake water microcosm. J Water Health 4:389–393CrossRefGoogle Scholar
  61. Signoretto C, Lleò M, Canepari P (2002) Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. Curr Microbiol 44:125–131CrossRefGoogle Scholar
  62. Silhan J, Corfitzen CB, Albrechtsen HJ (2006) Effect of temperature and pipe material on biofilm formation and survival of Escherichia coli in used drinking water pipes: a laboratory-based study. Water Sci Technol 54:49–56CrossRefGoogle Scholar
  63. Smith B, Oliver JD (2006) In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl Environ Microbiol 72:1445–1451. doi: 10.1128/AEM.72.2.1445-1451.2006 CrossRefGoogle Scholar
  64. Su X, Guo L, Ding L, Qu K, Shen C (2016) Induction of viable but nonculturable state in Rhodococcus and transcriptome analysis using RNA-sEq. PLoS One 11:e0147593. doi: 10.1371/journal.pone.0147593 CrossRefGoogle Scholar
  65. Sun F, Chen J, Zhong L, Zhang X-h, Wang R, Guo Q, Dong Y (2008) Characterization and virulence retention of viable but nonculturable Vibrio harveyi. FEMS Microbiol Ecol 64:37–44. doi: 10.1111/j.1574-6941.2008.00442.x CrossRefGoogle Scholar
  66. Tarr CL, Patel JS, Puhr ND, Sowers EG, Bopp CA, Strockbine NA (2007) Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol 45:134–140. doi: 10.1128/JCM.01544-06 CrossRefGoogle Scholar
  67. Thompson CC, Vicente AC, Souza RC, Vasconcelos AT, Vesth T, Alves N Jr, Ussery DW, Iida T, Thompson FL (2009) Genomic taxonomy of Vibrios. BMC Evol Biol 9:258. doi: 10.1186/1471-2148-9-258 CrossRefGoogle Scholar
  68. van Elsas JD, Semenov AV, Costa R, Trevors JT (2011) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME 5:173–183. doi: 10.1038/ismej.2010.80.CrossRefGoogle Scholar
  69. Vattakaven T, Bond P, Bradley G, Munn CB (2006) Differential effects of temperature and starvation on induction of the viable-but-nonculturable state in the coral pathogens Vibrio shiloi and Vibrio tasmaniensis. Appl Environ Microbiol 72:6508–6513. doi: 10.1128/AEM.00798-06 CrossRefGoogle Scholar
  70. Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323. doi: 10.1007/BF02010671 CrossRefGoogle Scholar
  71. Zhao F, Bi X, Hao Y, Liao X (2013) Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics. PLoS ONE 8:e62388. doi:  10.1371/journal.pone.0062388 CrossRefGoogle Scholar
  72. Zhong L, Chen J, Zhang XH, Jiang YA (2009) Entry of Vibrio cincinnatiensis into viable but nonculturable state and its resuscitation. Lett Appl Microbiol 48:247–252. doi: 10.1111/j.1472-765X.2008.02522.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
  2. 2.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations