Skip to main content
Log in

Breaking through the stress barrier: the role of BolA in Gram-negative survival

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The morphogene bolA plays a significant role in the adaptation of Escherichia coli to general stresses. In general, bacteria can thrive and persist under harsh conditions, counteracting external stresses by using varied mechanisms, including biofilm formation, changes in cell shape, size and protein content, together with alterations in the cell wall structure, thickness and permeability. In E. coli, an increased expression of bolA occurs mainly under stress challenges and when bacterial morphology changes from rod-like to spherical. Moreover, BolA is able to induce biofilm formation and changes in the outer membrane, making it less permeable to harmful agents. Although there has been substantial progress in the description of BolA activity, its role on global cell physiology is still incomplete. Proteins with strong homology to BolA have been found in most living organisms, in many cases also exerting a regulatory role. In this review we summarize current knowledge on the role of BolA, mainly in E. coli, and discuss its implication in global regulation in relation to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldea M, Hernandez-Chico C, de la Campa AG, Kushner SR, Vicente M (1988) Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 170(11):5169–5176

    CAS  Google Scholar 

  • Aldea M, Garrido T, Hernandez-Chico C, Vicente M, Kushner SR (1989) Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J 8(12):3923–3931

    CAS  Google Scholar 

  • Aldea M, Garrido T, Pla J, Vicente M (1990) Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. EMBO J 9(11):3787–3794

    CAS  Google Scholar 

  • Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181(20):6361–6370

    CAS  Google Scholar 

  • Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC (2010) The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 34(5):883–923

    CAS  Google Scholar 

  • Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev 5(9):721–726

    CAS  Google Scholar 

  • Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–537

    Article  CAS  Google Scholar 

  • Cai SJ, Inouye M (2002) EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem 277(27):24155–24161. doi:10.1074/jbc.M110715200

    Article  CAS  Google Scholar 

  • Cao GJ, Sarkar N (1997) Stationary phase-specific mRNAs in Escherichia coli are polyadenylated. Biochem Biophys Res Commun 239(1):46–50

    Article  CAS  Google Scholar 

  • Chin KH, Lin FY, Hu YC, Sze KH, Lyu PC, Chou SH (2005) NMR structure note–solution structure of a bacterial BolA-like protein XC975 from a plant pathogen Xanthomonas campestris pv. campestris. J Biomol NMR 31(2):167–172

    Article  CAS  Google Scholar 

  • Couturier J, Jacquot JP, Rouhier N (2009) Evolution and diversity of glutaredoxins in photosynthetic organisms. Cell Mol Life Sci 66(15):2539–2557. doi:10.1007/s00018-009-0054-y

    Article  CAS  Google Scholar 

  • Couturier J, Wu HC, Dhalleine T, Pegeot H, Sudre D, Gualberto JM, Jacquot JP, Gaymard F, Vignols F, Rouhier N (2013) Monothiol Glutaredoxin-BolA Interactions: redox control of arabidopsis thaliana BolA2 and SufE1. Mol Plant. doi:10.1093/mp/sst156

    Google Scholar 

  • Donachie WD, Begg KJ, Vicente M (1976) Cell length, cell growth and cell division. Nature 264(5584):328–333

    Article  CAS  Google Scholar 

  • Freire P, Amaral JD, Santos JM, Arraiano CM (2006a) Adaptation to carbon starvation: RNase III ensures normal expression levels of bolA1p mRNA and sigma(S). Biochimie 88(3–4):341–346

    Article  CAS  Google Scholar 

  • Freire P, Vieira HL, Furtado AR, de Pedro MA, Arraiano CM (2006b) Effect of the morphogene bolA on the permeability of the Escherichia coli outer membrane. FEMS Microbiol Lett 260(1):106–111

    Article  CAS  Google Scholar 

  • Freire P, Moreira RN, Arraiano CM (2009) BolA inhibits cell elongation and regulates MreB expression levels. J Mol Biol 385(5):1345–1351

    Article  CAS  Google Scholar 

  • Frenkiel-Krispin D, Levin-Zaidman S, Shimoni E, Wolf SG, Wachtel EJ, Arad T, Finkel SE, Kolter R, Minsky A (2001) Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection. EMBO J 20(5):1184–1191. doi:10.1093/emboj/20.5.1184

    Article  CAS  Google Scholar 

  • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science (New York, NY) 302(5651):1727–1736

    Article  CAS  Google Scholar 

  • Guinote IB, Matos RG, Freire P, Arraiano CM (2011) BolA affects cell growth, and binds to the promoters of penicillin-binding proteins 5 and 6 and regulates their expression. J Microbiol Biotechnol 21(3):243–251

    CAS  Google Scholar 

  • Guinote IB, Moreira RN, Freire P, Arraiano CM (2012) Characterization of the BolA homolog IbaG: a new gene involved in acid resistance. J Microbiol Biotechnol 22(4):484–493

    Article  CAS  Google Scholar 

  • Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ (2004) The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun 72(2):1155–1158

    Article  CAS  Google Scholar 

  • Hengge-Aronis R (1996) Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21(5):887–893

    Article  CAS  Google Scholar 

  • Hengge-Aronis R (1999) Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2(2):148–152. doi:10.1016/S1369-5274(99)80026-5

    Article  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66(3):373–395 table of contents

    Article  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183

    Article  CAS  Google Scholar 

  • Huynen MA, Spronk CA, Gabaldon T, Snel B (2005) Combining data from genomes, Y2H and 3D structure indicates that BolA is a reductase interacting with a glutaredoxin. FEBS Lett 579(3):591–596

    Article  CAS  Google Scholar 

  • Ishihama A (1999) Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes Cells 4(3):135–143

    Article  CAS  Google Scholar 

  • Jasiecki J, Wegrzyn G (2003) Growth-rate dependent RNA polyadenylation in Escherichia coli. EMBO Rep 4(2):172–177

    Article  CAS  Google Scholar 

  • Kasai T, Inoue M, Koshiba S, Yabuki T, Aoki M, Nunokawa E, Seki E, Matsuda T, Matsuda N, Tomo Y, Shirouzu M, Terada T, Obayashi N, Hamana H, Shinya N, Tatsuguchi A, Yasuda S, Yoshida M, Hirota H, Matsuo Y, Tani K, Suzuki H, Arakawa T, Carninci P, Kawai J, Hayashizaki Y, Kigawa T, Yokoyama S (2004) Solution structure of a BolA-like protein from Mus musculus. Protein Sci 13(2):545–548

    Article  CAS  Google Scholar 

  • Khona DK, Dongre SS, Arraiano CM, D’Souza JS (2013) A BolA-like morphogene from the alga Chlamydomonas reinhardtii changes morphology and induces biofilm formation in Escherichia coli. FEMS Microbiol Lett 339(1):39–47. doi:10.1111/1574-6968.12051

    Article  CAS  Google Scholar 

  • Kim SH, Kim M, Lee JK, Kim MJ, Jin YH, Seong RH, Hong SH, Joe CO, Park SD (1997) Identification and expression of uvi31 + , a UV-inducible gene from Schizosaccharomyces pombe. Environ Mol Mutagen 30(1):72–81

    Article  CAS  Google Scholar 

  • Kim MJ, Kim HS, Lee JK, Lee CB, Park SD (2002) Regulation of septation and cytokinesis during resumption of cell division requires uvi31+, a UV-inducible gene of fission yeast. Mol Cells 14(3):425–430

    CAS  Google Scholar 

  • Koch B, Nybroe O (2006) Initial characterization of a bolA homologue from Pseudomonas fluorescens indicates different roles for BolA-like proteins in P. fluorescens and Escherichia coli. FEMS Microbiol Lett 262(1):48–56

    Article  CAS  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643

    Article  CAS  Google Scholar 

  • Kumanovics A, Chen OS, Li L, Bagley D, Adkins EM, Lin H, Dingra NN, Outten CE, Keller G, Winge D, Ward DM, Kaplan J (2008) Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J Biol Chem 283(16):10276–10286

    Article  CAS  Google Scholar 

  • Lacour S, Landini P (2004) SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186(21):7186–7195. doi:10.1128/JB.186.21.7186-7195.2004

    Article  CAS  Google Scholar 

  • Lange R, Hengge-Aronis R (1991) Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 173(14):4474–4481

    CAS  Google Scholar 

  • Lewis K (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64(3):503–514

    Article  CAS  Google Scholar 

  • Loewen PC, Hu B, Strutinsky J, Sparling R (1998) Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44(8):707–717

    Article  CAS  Google Scholar 

  • Marquardt JL, Siegele DA, Kolter R, Walsh CT (1992) Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol 174(17):5748–5752

    CAS  Google Scholar 

  • Martinez-Antonio A, Janga SC, Thieffry D (2008) Functional organisation of Escherichia coli transcriptional regulatory network. J Mol Biol 381(1):238–247

    Article  CAS  Google Scholar 

  • Moreira RN, Dressaire C, Domingues S, Arraiano CM (2011) A new target for an old regulator: H-NS represses transcription of bolA morphogene by direct binding to both promoters. Biochem Biophys Res Commun 411(1):50–55. doi:10.1016/j.bbrc.2011.06.084

    Article  CAS  Google Scholar 

  • Nikaido H, Rosenberg EY, Foulds J (1983) Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol 153(1):232–240

    CAS  Google Scholar 

  • Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 104(19):8113–8118

    Article  CAS  Google Scholar 

  • Santos JM, Drider D, Marujo PE, Lopez P, Arraiano CM (1997) Determinant role of E. coli RNase III in the decay of both specific and heterologous mRNAs. FEMS Microbiol Lett 157(1):31–38

    Article  CAS  Google Scholar 

  • Santos JM, Freire P, Vicente M, Arraiano CM (1999) The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32(4):789–798

    Article  CAS  Google Scholar 

  • Santos JM, Lobo M, Matos AP, De Pedro MA, Arraiano CM (2002) The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 45(6):1729–1740

    Article  CAS  Google Scholar 

  • Santos JM, Freire P, Mesquita FS, Mika F, Hengge R, Arraiano CM (2006) Poly(A)-polymerase I links transcription with mRNA degradation via sigmaS proteolysis. Mol Microbiol 60(1):177–188

    Article  CAS  Google Scholar 

  • Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177(16):4696–4702

    CAS  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucl Acids Res 29(1):22–28

    Article  CAS  Google Scholar 

  • Vicente M, Chater KF, De Lorenzo V (1999) Bacterial transcription factors involved in global regulation. Mol Microbiol 33(1):8–17

    Article  CAS  Google Scholar 

  • Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180(9):2442–2449

    CAS  Google Scholar 

  • Vieira HL, Freire P, Arraiano CM (2004) Effect of Escherichia coli morphogene bolA on biofilms. Appl Environ Microbiol 70(9):5682–5684. doi:10.1128/AEM.70.9.5682-5684.2004

    Article  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science (New York, NY) 295(5559):1487

    Article  CAS  Google Scholar 

  • Yamamoto K, Nagura R, Tanabe H, Fujita N, Ishihama A, Utsumi R (2000) Negative regulation of the bolA1p of Escherichia coli K-12 by the transcription factor OmpR for osmolarity response genes. FEMS Microbiol Lett 186(2):257–262

    Article  CAS  Google Scholar 

  • Zhou Y, Gottesman S (2006) Modes of regulation of RpoS by H-NS. J Bacteriol 188(19):7022–7025. doi:10.1128/JB.00687-06

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fundação para a Ciência e a Tecnologia, Portugal including PTDC/QUI-BIQ/111757/2009, PTDC/BIA-MIC/4142/2012, PEst-OE/EQB/LA0004/2013 and European Comission Grant FP7-KBBE-2011-1-289326. MV acknowledges grant BIO2011-28941-C03-01 from the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Vicente or Cecília Maria Arraiano.

Additional information

Inês Batista Guinote and Ricardo Neves Moreira have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guinote, I.B., Moreira, R.N., Barahona, S. et al. Breaking through the stress barrier: the role of BolA in Gram-negative survival. World J Microbiol Biotechnol 30, 2559–2566 (2014). https://doi.org/10.1007/s11274-014-1702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1702-4

Keywords

Navigation