Effects of Atmospheric Precipitation on Heavy Metal Accumulation and Deactivation Amendment in Wheat Around a Lead Smelter


The effects of atmospheric precipitation on heavy metal accumulation and deactivation amendment in wheat surrounding a lead smelter were studied. The total precipitation amounts of Cd, Pb, and As in an in situ test were noticeably more than their amounts in an off-site test over the entire growing period of wheat. In the same soil-wheat system, the heavy metal concentrations of wheat leaves in the off-site test were significantly lower than those in the in situ test near the lead smelter. Specifically, Cd, Pb, and As were 53.1%, 89.2%, and 85.7% less, without the amendment of the heavy metal deactivator (HMD). Meanwhile, the deactivation effect improved in the off-site test, resulting in the respective Cd, Pb, and As decreases of 6.0%, 46.3%, and 22.1% more, compared with it in the in situ test. The changes in heavy metal concentrations of wheat grains were consistent with those of wheat leaves. The concentrations of Cd and Pb in the off-site test were 10.7% and 91.0% lower than the in situ values, without the amendment of the HMD, and deactivation effect also had enhanced, with Cd and Pb decreasing by 1.3% and 9.6% more. The heavy metal concentrations of wheat leaves in the indoor pot test were significantly lower than those in the in situ test, with Cd, Pb, and As 74.4%–87.3%, 95.6%–97.0%, and 86.2%–87.4% less, respectively. After repeated leaf-washing treatment, the effect of HMD amendment was further enhanced, with Cd, Pb, and As decreasing by 30.8%, 33.6%, and 34.7%, respectively. All tests conducted indicate atmospheric precipitation is the controlling pollution source. Deactivation amendment can reduce the heavy metal concentrations of wheat leaves and grains, even in the presence of precipitation contamination, although the presence of precipitation reduces the effect of HMD amendment. Repeated leaf-washing can enhance the effect of HMD amendment and decrease the accumulation of heavy metals from atmospheric precipitation in wheat.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Cao, X., Tan, C., Wu, L., Luo, Y., He, Q., Liang, Y., et al. (2020). Atmospheric deposition of cadmium in an urbanized region and the effect of simulated wet precipitation on the uptake performance of rice. Science of the Total Environment, 700, 134513.

    CAS  Article  Google Scholar 

  2. Castanheiro, A., Hofman, J., Nuyts, G., Joosen, S., Spassov, S., Blust, R., et al. (2020). Leaf accumulation of atmospheric dust: Biomagnetic, morphological and elemental evaluation using SEM. ED-XRF and HR-ICP-MS. Atmospheric Environment, 221, 117082.

    CAS  Article  Google Scholar 

  3. Cui, J., Wang, W., Peng, Y., Zhou, F., He, D., Wang, J., et al. (2019). Effects of simulated Cd deposition on soil Cd availability, microbial response, and crop Cd uptake in the passivation-remediation process of Cd-contaminated purple soil. Science of the Total Environment, 683.

  4. Derry, L. A., & Chadwick, O. A. (2007). Contributions from Earth’s atmosphere to soil. Elements, 3, 333–338.

    CAS  Article  Google Scholar 

  5. Doabi, S., Karami, M., Afyuni, M., & Yeganeh, M. (2018). Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety, 163, 153–164.

    CAS  Article  Google Scholar 

  6. Edelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431–444.

    CAS  Article  Google Scholar 

  7. Feng, W., Guo, Z., Peng, C., Xiao, X., Shi, L., Zeng, P., et al. (2019). Atmospheric bulk deposition of heavy metal(loid)s in central south China: Fluxes, influencing factors and implication for paddy soils. Journal of Hazardous Materials, 371, 634–642.

    CAS  Article  Google Scholar 

  8. Gelly, R., Fekiacova, Z., Guihou, A., Doelsch, E., Deschamps, P., & Keller, C. (2019). Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. Science of the Total Environment, 665.

  9. Gimeno-García E, Andreu V, Boluda R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution 1996; 92: 0–25.

  10. Guo, G., Zhou, Q., & Ma, L. Q. (2006). Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review. Environmental Monitoring & Assessment, 116, 513–528.

    CAS  Article  Google Scholar 

  11. Hovmand, M. F., Kemp, K., Kystol, J., Johnsen, I., Riis-Nielsen, T., & Pacyna, J. M. (2008). Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia. Environmental Pollution, 155, 537–541.

    CAS  Article  Google Scholar 

  12. Kachenko, A. G., & Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, and Soil Pollution, 169, 101–123.

    CAS  Article  Google Scholar 

  13. Li, Y., Wang, H., Wang, H., Yin, F., Yang, X., & Hu, Y. (2014). Heavy metal pollution in vegetables grown in the vicinity of a multi-metal mining area in Gejiu, China: Total concentrations, speciation analysis, and health risk. Environmental Science and Pollution Research, 21, 12569–12582.

    CAS  Article  Google Scholar 

  14. Li, X., Jiao, W., Xiao, R., Chen, W., & Chang, A. (2015). Soil pollution and site remediation policies in China: A review. Environmental Reviews, 23, 263–274.

    Article  Google Scholar 

  15. Liu, W., Zhao, J., Ouyang, Z., Söderlund, L., & Liu, G. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31.

  16. Liu, C., Huang, Y., Lei, M., Hao, X., Li, X., Tie, B., et al. (2012). Soil contamination and assessment of heavy metals of Xiangjiang River basin. Chinese Journal of Environmental Science, 33, 260–265 (in Chinese).

    Google Scholar 

  17. Liu, H., Zhou, J., Li, M., Hu, Y., Liu, X., & Zhou, J. (2019). Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. Journal of Hazardous Materials, 362.

  18. Lu, Y., & Qiu, K. (2014). The quantum of Pb, Cd and As in the ambient air of Lead smelting factorys and their effects on soils. The Administration and Technique of Environmental Monitoring, 26, 60–63 (in Chinese).

    CAS  Google Scholar 

  19. Lv, J., Liu, Y., Zhang, Z., & Dai, J. (2013). Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of Hazardous Materials, 261, 387–397.

    CAS  Article  Google Scholar 

  20. Ma, C., Liu, F., Su, P., & Zhao, J. (2018). Chemical speciation and risk assessment of Pb in different Pb sedimentation area. Ecology and Environmental Science, 27, 1466–1471.

    Google Scholar 

  21. Meng, W., Wang, Z., Hu, B., Wang, Z., Li, H., & Goodman, R. C. (2016). Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: A case study assessment. Agricultural Water Management, 171.

  22. Nickel, S., Hertel, A., Pesch, R., Schröder, W., Steinnes, E., & Uggerud, H. T. (2015). Correlating concentrations of heavy metals in atmospheric deposition with respective accumulation in moss and natural surface soil for ecological land classes in Norway between 1990 and 2010. Environmental Science and Pollution Research, 22, 8488–8498.

    CAS  Article  Google Scholar 

  23. Pacyna, J. M., Pacyna, E. G., & Aas, W. (2009). Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmospheric Environment, 43, 117–127.

    CAS  Article  Google Scholar 

  24. Qian, T., Wu, P., Qin, Q., Huang, Y., Wang, Y., & Zhou, D. (2018). Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II). Journal of Hazardous Materials, 362.

  25. Shen, Z., Jin, F., O’Connor, D., & Hou, D. (2019a) Solidification/stabilization for soil remediation: An old technology with new vitality. Environmental Science & Technology 53, 11615–11617.

  26. Shen, Z., Hou, D., Jin, F., Shi, J., Fan, X., Tsang, D., et al. (2019b). Effect of production temperature on lead removal mechanisms by rice straw biochars. Science of the Total Environment, 655, 751–758.

  27. Shi R, Zheng X, Gong Q, Han J, Zhao Y, Zhou Q, et al. Heavy metal pollution source analysis and control strategy in soil of agricultural producing area the administration and technique of environmental monitoring 2017; 29: 9–13. (in Chinese).

  28. Song, L., Han, Z., Lv, X., Zhang, W., Li, X., & Wang, L. (2018). Remediation of Cd-contaminated cropland soil in northen China via the amendment of modified biofuel ash. Journal of Agro-Environment Science, 37, 1484–1494 (in Chinese).

    Google Scholar 

  29. Song, L., Han, Z., Zhang, W., Ma, L., Wang, L., Li, X., et al. (2019). Remediation of Cd-contaminated cropland soil in South China with the amendment of modified biofuel ash and its long-term effects. China Environmental Science, 39, 226–234 (in Chinese).

    Google Scholar 

  30. Sun, H., Zhu, L., & Zhou, D. (2017). POLSOIL: Research on soil pollution in China. Environmental Science and Pollution Research, 25, 1–3.

    Article  Google Scholar 

  31. Wang X, Liu W, Li Z, Teng Y, Christie P, Luo Y. Effects of long-term fertilizer applications on peanut yield and quality and on plant and soil heavy metal accumulation. Pedosphere 2017.

  32. Wang, K., Qiao, Y., Zhang, H., Yue, S., & Liu, L. (2018). Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicology & Environmental Safety, 148, 876–883.

    CAS  Article  Google Scholar 

  33. Wang, J., Su, J., Li, Z., Liu, B., Cheng, G., Jiang, Y., et al. (2019a). Source apportionment of heavy metal and their health risks in soil-dustfall-plant system nearby a typical non-ferrous metal mining area of Tongling, Eastern China. Environmental Pollution, 254.

  34. Wang, P., Sun, Z., Hu, Y., & Cheng, H. (2019b). Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Science of the Total Environment, 695.

  35. Xie, Y., Ji, X., Tian, F., Wu, J., Liu, Z., & Guan, D. (2017). Effect of passivator on Cd uptaking of rice in different Cd pollution characteristics paddy soils. Chinese Journal of Environmental Engineering, 11, 1242–1250 (in Chinese).

    Google Scholar 

  36. Xu, X., Zhao, Y., Zhao, X., Wang, Y., & Deng, W. (2014). Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicology and Environmental Safety, 108.

  37. Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700.

    CAS  Article  Google Scholar 

  38. Yuankai, Z., Zhijiang, H., Hongchen, W., Lu, Q., Guohua, L., & Xiaojun, Z. (2015). Applications of hollow nanomaterials in environmental remediation and monitoring: A review. Frontiers of Environmental Science & Engineering, 9, 770–783.

    Article  Google Scholar 

  39. Zhai, X., Li, Z., & Huang, B. (2018). Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Science of the Total Environment, 635, 92–99.

    CAS  Article  Google Scholar 

  40. Zhao, F., Ma, Y., Zhu, Y., Tang, Z., & McGrath, S. (2015). Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49, 750–759.

    CAS  Article  Google Scholar 

  41. Zhou, Y., Liu, X., & Wang, J. (2019). Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Science of the Total Environment, 694, 133798.

    CAS  Article  Google Scholar 

Download references


This research is supported by the operation cost of key Laboratory of groundwater remediation funded by Hebei science and technology department (YX201801), Guangxi Key Research & Development Project (GuiKeAB18126062), China Geological Survey basic research fund (YYWF201629, SK201901), and Hebei Province Key Research & Development Project (18274232).

Author information



Corresponding author

Correspondence to Zhantao Han.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, L., Han, Z., Li, Z. et al. Effects of Atmospheric Precipitation on Heavy Metal Accumulation and Deactivation Amendment in Wheat Around a Lead Smelter. Water Air Soil Pollut 231, 327 (2020). https://doi.org/10.1007/s11270-020-04703-x

Download citation


  • Atmospheric precipitation
  • Heavy metal
  • Wheat
  • Deactivation
  • Lead smelter