A Bibliometric Description of Lignin Applicability for the Removal of Chemical Pollutants in Effluents

Abstract

Several industrial sectors produce tons of effluents daily containing a high amount of hazardous chemical pollutants that pose a major threat to the environment and human health. Current wastewater treatment methods, such as flocculation and activated carbon adsorption, have drawbacks linked to high material cost and too much energy consumption. Thus, the search for renewable, biodegradable, and efficient materials has been the object of research aimed at replacing the conventional materials used to cheapen processes and reduce environmental impacts. Lignin stands out in this context as it has low cost and high availability. Therefore, several scientific researches were developed to harness the potential of lignin, especially as adsorbent, for the removal of chemical agents from effluents. This paper presents a bibliometric review performed on the Scopus database, showing the evolution of studies related to the applicability of lignin in the removal of chemical pollutants in waters over the last five years. Data regarding annual publications, languages, journals, countries, institutions, keywords, and subjects were analyzed. The realized screening selected 130 articles that met the previously defined criteria. Results indicated a strong collaboration between countries and China’s substantial contribution to the documents. The analysis also has shown that lignin is mainly used as adsorbent material, sorbent, flocculant agent, and hydrogel and presents important results and information for future researchers on this topic.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abejón, R. (2018). A bibliometric study of scientific publications regarding hemicellulose valorization during the 2000–2016 period: identification of alternatives and hot topics. ChemEngineering, 2.

  2. Abejón, R., Pérez-Acebo, H., Clavijo L. (2018). Alternatives for chemical and biochemical lignin valorization: hot topics from a bibliometric analysis of the research published during the 2000–2016 period. Processes, 6.

  3. Adebayo, M. A., Prola, L. D. T., Lima, E. C., Puchana-Rosero, M. J., Cataluña, R., Saucier, C., Umpierres, C. S., Vaghetti, J. C. P., Silva, L. G., & Ruggiero, R. (2014). Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese. Journal of Hazardous Materials, 268, 43–50.

    CAS  Google Scholar 

  4. Almeida, E., Assalin, M. R., Rosa, M. A., & Durán, N. (2004). Tratamento de efluentes industriais por processos oxidativos na presença de ozônio. Química Nova, 27, 818–824.

    CAS  Google Scholar 

  5. Aniagor, C. O., & Menkiti, M. C. (2018). Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. Journal of Environmental Chemical Engineering, 6, 2105–2118.

    CAS  Google Scholar 

  6. Bhatia, S. K., Jagtap, S. S., Bedekar, A. A., Bhatia, R. K., Patel, A. K., Pant, D., Rajesh Banu, J., Rao, C. V., Kim, Y., & Yang, Y. (2020). Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresource Technology, 300, 122724.

    CAS  Google Scholar 

  7. Budnyak, T. M., Aminzadeh, S., Pylypchuk, I. V., Sternik, D., Tertykh, V. A., Lindström, M. E., & Sevastyanova, O. (2018). Methylene Blue dye sorption by hybrid materials from technical lignins. Journal of Environmental Chemical Engineering, 6, 4997–5007.

    CAS  Google Scholar 

  8. Cui, G., Wang, X., Xun, J., & Lou, T. (2017). Microwave assisted synthesis and characterization of a ternary flocculant from chitosan, acrylamide and lignin. International Biodeterioration & Biodegradation, 123, 269–275.

    CAS  Google Scholar 

  9. Demcak, S., Balintova, M., Hurakova, M., Frontasyeva, M. V., Zinicovscaia, I., & Yushin, N. (2017). Utilization of poplar wood sawdust for heavy metals removal from model solutions. Nova Biotechnologica et Chimica, 16, 26–31.

    CAS  Google Scholar 

  10. Domínguez-Robles, J., Peresin, M. S., Tamminen, T., Rodríguez, A., Larrañeta, E., & Jääskeläinen, A. (2018). Lignin-based hydrogels with “super-swelling” capacities for dye removal. International Journal of Biological Macromolecules, 115, 1249–1259.

    Google Scholar 

  11. Duan, Y., Freyburger, A., Kunz, W., & Zollfrank, C. (2018). Lignin/chitin films and their adsorption characteristics for heavy metal ions. ACS Sustainable Chemistry & Engineering, 6, 6965–6973.

    CAS  Google Scholar 

  12. Ennaert, T., Beeck, B. O., Vanneste, J., Smit, A. T., Huijgen, W. J. J., Vanhulsel, A., Jacobsa, P. A., & Sels, B. F. (2016). The importance of pretreatment and feedstock purity in the reductive splitting of (ligno) cellulose by metal supported USY zeolite. Green Chemistry, 18, 2095–2105.

    CAS  Google Scholar 

  13. Food and Agriculture Organization of The United Nations, FAO. (2019). Pulp and paper capacities. http://www.fao.org/3/ca5690t/CA5690T.pdf. Accessed 19 November 2019.

  14. Ge, Y., Li, Z., Kong, Y., Song, Q., & Wang, K. (2014a). Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 20, 4429–4436.

    CAS  Google Scholar 

  15. Ge, Y., Xiao, D., Li, Z., & Cui, X. (2014b). Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. Journal of Materials Chemistry A, 2, 2136–2145.

    CAS  Google Scholar 

  16. Ge, Y., Xiao, D., Li, Z., & Cui, X. (2016). Conversion of organosolv lignin into an efficient mercury ion adsorbent by a microwave-assisted method. Journal of the Taiwan Institute of Chemical Engineers, 63, 500–505.

    CAS  Google Scholar 

  17. Guo, K., Gao, B., Li, R., Wang, W., Yue, Q., & Wang, Y. (2018a). Flocculation performance of lignin-based flocculant during reactive blue dye removal: comparison with commercial flocculants. Environmental Science and Pollution Research, 25, 2083–2095.

    CAS  Google Scholar 

  18. Guo, X., Zhang, S., & Shan, X. (2008). Adsorption of metal ions on lignin. Journal of Hazardous Materials, 151, 134–142.

    CAS  Google Scholar 

  19. Guo, Y., Gao, W., & Fatehi, P. (2018b). Hydroxypropyl sulfonated kraft lignin as a coagulant for cationic dye. Industrial Crops and Products, 124, 273–283.

    CAS  Google Scholar 

  20. Halysh, V., Sevastyanova, O., Riazanova, A. V., Pasalskiy, B., Budnyak, T., Lindström, M. E., & Кartel, M. (2018). Walnut shells as a potential low-cost lignocellulosic sorbent for dyes and metal ions. Cellulose, 25, 4729–4742.

    CAS  Google Scholar 

  21. Han, Y., Shi, L., Meng, J., Yu, H., & Zhang, X. (2014). Azo dye biodecolorization enhanced by Echinodontium taxodii cultured with lignin. PLoS One, 9, e109786.

    Google Scholar 

  22. Hu, S.-W., & Chen, S. (2015). A multipurpose lignin-based adsorbent for metallic ions, nanoparticles and various organophosphate pesticides in hexane. Journal of the Chinese Chemical Society, 62, 875–888.

    CAS  Google Scholar 

  23. Huang, G., Wang, D., Ma, S., Chen, J., Jiang, L., & Wang, P. (2015). A new, low-cost adsorbent: preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). Journal of Colloid and Interface Science, 445, 294–302.

    CAS  Google Scholar 

  24. Huang, H., Han, C., Wang, G., & Feng, C. (2018). Lignin combined with polypyrrole as a renewable cathode material for H2O2 generation and its application in the electro-Fenton process for azo dye removal. Electrochimica Acta, 259, 637–646.

    CAS  Google Scholar 

  25. Huang, X., Zhao, S., Abu-Omar, M., & Whelton, A. J. (2017). In-situ cleaning of heavy metal contaminated plastic water pipes using a biomass derived ligand. Journal of Environmental Chemical Engineering, 5, 3622–3631.

    CAS  Google Scholar 

  26. Jin, C., Zhang, X., Xin, J., Liu, G., Chen, J., Wu, G., Liu, T., Zhang, J., & Kong, Z. (2018). Thiol–ene synthesis of cysteine-functionalized lignin for the enhanced adsorption of Cu(II) and Pb(II). Industrial & Engineering Chemistry Research, 57, 7872–7880.

    CAS  Google Scholar 

  27. Klapiszewski, Ł., Bartczak, P., Wysokowski, M., Jankowska, M., Kabat, K., & Jesionowski, T. (2015). Silica conjugated with kraft lignin and its use as a novel ‘green’sorbent for hazardous metal ions removal. Chemical Engineering Journal, 260, 684–693.

    CAS  Google Scholar 

  28. Kolbasov, A., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 530, 250–263.

    CAS  Google Scholar 

  29. Kozyatnyk, I., Haglund, P., Lövgren, L., Tysklind, M., Gustafsson, A., & Törneman, N. (2014). Evaluation of barrier materials for removing pollutants from groundwater rich in natural organic matter. Water Science & Technology, 70, 32–39.

    CAS  Google Scholar 

  30. Kumari, S., Chauhan, G. S., Monga, S., Kaushik, A., & Ahn, J.-H. (2016). New lignin-based polyurethane foam for wastewater treatment. RSC Advances, 6, 77768–77776.

    CAS  Google Scholar 

  31. Kwak, H. W., Shin, M., Yun, H., Lee, K. H. (2016). Preparation of silk sericin/lignin blend beads for the removal of hexavalent chromium ions. International Journal of Molecular Sciences, 17.

  32. Li, X., He, Y., Sui, H., He, L. (2018b). One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials, 8.

  33. Li, Y., Wu, M., Wang, B., Wu, Y., Ma, M., & Zhang, X. (2016). Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources. ACS Sustainable Chemistry & Engineering, 4, 5523–5532.

    CAS  Google Scholar 

  34. Li, Y., Zhao, R., Pang, Y., Qiu, X., & Yang, D. (2018a). Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553, 187–194.

    CAS  Google Scholar 

  35. Li, Z., Ge, Y., & Wan, L. (2015a). Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. Journal of Hazardous Materials, 285, 77–83.

    CAS  Google Scholar 

  36. Li, Z., Kong, Y., & Ge, Y. (2015b). Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chemical Engineering Journal, 270, 229–234.

    CAS  Google Scholar 

  37. Li, Z., Xiao, D., Ge, Y., & Koehler, S. (2015c). Surface-functionalized porous lignin for fast and efficient lead removal from aqueous solution. ACS Applied Materials and Interfaces, 5, 15000–15009.

    Google Scholar 

  38. Mao, G., Huang, N., Chen, L., & Wang, H. (2018). Research on biomass energy and environment from the past to the future: a bibliometric analysis. Science of the Total Environment, 635, 1081–1090.

    CAS  Google Scholar 

  39. Marouani, E. M., Fakir, L. E., Yakhaf, S. M. L., Hrech, N. E., Dahchour, A., Sebbahi, S., Hajjaji, S. E., & Kifani-Sahban, F. (2017). Removal of textile dyes from aqueous solutions by lignin and its derivative charcoals: characterization, adsorption kinetics and isotherms. Desalination and Water Treatment, 81, 265–273.

    Google Scholar 

  40. Martin-Martinez, M., Barreiro, M. F. F., Silva, A. M. T., Figueiredo, J. L., Faria, J. L., & Gomes, H. T. (2017). Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution. Applied Catalysis B: Environmental, 219, 372–378.

    CAS  Google Scholar 

  41. Md Khudzari, J., Kurian, J., Tartakovsky, B., & Raghavan, G. S. V. (2018). Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochemical Engineering Journal, 136, 51–60.

    CAS  Google Scholar 

  42. Michelin, M., Maria de, T. M. P. L., Ruzene, D. S., Silva, D. P., Vicente, A. A., Jorge, J. A., Terenzi, H. F., & Teixeira, J. A. (2012). Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor. Applied Biochemistry and Biotechnology, 166, 336–347.

    CAS  Google Scholar 

  43. Nair, V., Panigrahy, A., & Vinu, R. (2014). Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chemical Engineering Journal, 254, 491–502.

    CAS  Google Scholar 

  44. Nasrullah, A., Bhat, A. H., Isa, M. H. (2016). Lignin: a sustainable biosorbent for heavy metal adsorption from wastewater, a review. AIP Conference Proceedings, 1787, 040001-1–040001-7.

  45. Ogunsile, B. O., & Bamgboye, M. O. (2017). Biosorption of lead (II) onto soda lignin gels extracted from Nypa fruiticans. Journal of Environmental Chemical Engineering, 5, 2708–2717.

    CAS  Google Scholar 

  46. Pereira, G. C., & Ebecken, N. F. F. (2009). Knowledge discovering for coastal waters classification. Expert Systems with Applications, 36, 8604–8609.

    Google Scholar 

  47. Qiu, X., Yu, J., Yang, D., Wang, J., Mo, W., & Qian, Y. (2018). Whitening sulfonated alkali lignin via H2O2/UV radiation and its application as dye dispersant. ACS Sustainable Chemistry & Engineering, 6, 1055–1060.

    CAS  Google Scholar 

  48. Ruas, T. L., & Pereira, L. (2014). Como construir indicadores de Ciência, Tecnologia e Inovação usando Web of Science, Derwent World Patent Index, Bibexcel e Pajek? Perspectivas em Ciência da Informação, 19, 52–81.

    Google Scholar 

  49. Shen, Z., Luo, Y., Wang, Q., Wang, X., & Sun, R. (2014). High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg2+. ACS Applied Materials and Interfaces, 6, 16147–16155.

    CAS  Google Scholar 

  50. Shuhailath, K. A., Linsha, V., Kumar, S. N., Babitha, K. B., Peer Mohamed, A. A., & Ananthakumar, S. (2016). Photoactive, antimicrobial CeO2 decorated AlOOH/PEI hybrid nanocomposite: a multifunctional catalytic-sorbent for lignin and organic dye. RSC Advances, 6, 54357–54370.

    CAS  Google Scholar 

  51. Tang, Y., Zeng, Y., Hu, T., Zhou, Q., & Peng, Y. (2016). Preparation of lignin sulfonate-based mesoporous materials for adsorbing malachite green from aqueous solution. Journal of Environmental Chemical Engineering, 4, 2900–2910.

    CAS  Google Scholar 

  52. Tian, J., Ren, S., Fang, G., & Ai, Q. (2014a). Synthesis and property of dimethyl-butyl-sulfonated lignin ammonium chloride. Chemistry and Industry of Forest Products, 34, 42–50.

    CAS  Google Scholar 

  53. Tian, J., Ren, S., Fang, G., & Ai, Q. (2014b). Preparation and performance of dimethyl-acetoxy-(2-carboxymethyl ether)-lignin ammonium chloride amphoteric surfactant. Bioresources, 9, 6290–6303.

    Google Scholar 

  54. Tsay, M. (2008). A bibliometric analysis of hydrogen energy literature, 1965–2005. Scientometrics, 75, 421–438.

  55. Wahlström, R., Kalliola, A., Heikkinen, J., Kyllönen, H., & Tamminen, T. (2017). Lignin cationization with glycidyltrimethylammonium chloride aiming at water purification applications. Industrial Crops and Products, 104, 188–194.

    Google Scholar 

  56. Wang, B., Wen, J.-L., Sun, S.-L., Wang, H.-M., Wang, S.-F., Liu, Q.-Y., Charlton, A., & Sun, R.-C. (2017). Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II). Industrial Crops and Products, 108, 72–80.

    CAS  Google Scholar 

  57. Wysokowski, M., Klapiszewski, Ł., Moszyński, D., Bartczak, P., Szatkowski, T., Majchrzak, I., Siwińska-Stefańska, K., Bazhenov, V. V., & Jesionowski, T. (2014). Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions. Marine Drugs, 10, 2245–2268.

    Google Scholar 

  58. Xu, F., Zhu, T.-T., Rao, Q.-Q., Shui, S.-W., Li, W.-W., He, H.-B., & Yao, R.-S. (2017). Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. Journal of Environmental Sciences, 53, 132–140.

    Google Scholar 

  59. Yadav, B. R., & Garg, A. (2016). Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts. Environmental Technology, 37, 1018–1025.

    CAS  Google Scholar 

  60. Yao, Q., Xie, J., Liu, J., Kang, H., & Liu, Y. (2014). Adsorption of lead ions using a modified lignin hydrogel. Journal of Polymer Research, 21, 465.

    Google Scholar 

  61. Yao, Z., Wang, L., & Qi, J. (2009). Biosorption of methylene blue from aqueous solution using a bioenergy forest waste: Xanthoceras sorbifolia seed coat. CLEAN—Soil, Air, Water, 37, 642–648.

    CAS  Google Scholar 

  62. Zhang, W., Han, Y., Haijiang, L., Ziwen, J., Lei, D., Xiaowei, K., Hu, Y., Aimin, L., & Rongshi, C. (2011). Removal of dyes from aqueous solutions by straw based adsorbents: batch and column studies. Chemical Engineering Journal, 168, 1120–1127.

    CAS  Google Scholar 

  63. Zhao, Q. (2016). Lignification: flexibility, biosynthesis and regulation. Trends in Plant Science, 21, 713–721.

    CAS  Google Scholar 

  64. Zyoud, S. H., Fuchs-Hanusch, D., Zyoud, S. H., Al-Rawajfeh, A. E., & Shaheen, H. Q. (2017). A bibliometric-based evaluation on environmental research in the Arab world. International journal of Environmental Science and Technology, 14, 689–706.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial assistance from the Brazilian research funding agencies such as CAPES (Coordination for the Improvement of Higher Education Personnel) under Finance Code 001, a Brazilian foundation within the Ministry of Education (MEC), CNPq (National Council for Scientific and Technological Development), a Brazilian foundation associated to the Ministry of Science and Technology (MCT), and FAPITEC/SE (the Foundation of Support to Research and Technological Innovation of the State of Sergipe).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denise Santos Ruzene.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teles, M.N.O., Santos, B.L.P., Silva, D.P. et al. A Bibliometric Description of Lignin Applicability for the Removal of Chemical Pollutants in Effluents. Water Air Soil Pollut 231, 333 (2020). https://doi.org/10.1007/s11270-020-04702-y

Download citation

Keywords

  • Lignin
  • Chemical pollutants
  • Effluents
  • Bibliometric analysis