How Effective Are Nanomaterials for the Removal of Heavy Metals from Water and Wastewater?

Abstract

Efficient removal of heavy metals from water and wastewater is a necessity for human and environmental well-being. Agricultural, domestic, and industrial waste discharges increase with the increase in the global population. Discharges are loaded with toxic metallic substances that inevitably reach water sources. Conventional treatment methods are in many cases inadequate in their removal efficiencies. Alternatively, recently developed advanced treatment approaches, such as nanotechnologies, offer advantages in water treatment. Nanotechnology brought about materials with high specific surface areas and adsorption capacities for the removal of undesirable heavy metals present in water. A detailed review of the use of nanotechnologies and nanomaterials for the removal of heavy metals from aqueous solutions is presented in this study. Limitations, research gaps, and suitability of nanotechnology in water treatment for the removal of heavy metals at a large scale are discussed, and relevant conclusions are accordingly deduced.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdel Gawad, S. S. (2018). Concentrations of heavy metals in water, sediment and mollusk gastropod, Lanistes carinatus from Lake Manzala, Egypt. The Egyptian Journal of Aquatic Research. https://doi.org/10.1016/j.ejar.2018.05.001.

  2. Abou-Zeid, R. E., Dacrory, S., Ali, K. A., & Kamel, S. (2018). Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. International Journal of Biological Macromolecules, 119, 207–214. https://doi.org/10.1016/j.ijbiomac.2018.07.127.

    CAS  Article  Google Scholar 

  3. Abril, M., Ruiz, H., & Cumbal, L. H. (2018). Biosynthesis of multicomponent nanoparticles with extract of Mortiño (Vaccinium floribundum Kunth) berry: application on heavy metals removal from water and immobilization in soils. Journal of Nanotechnology, 2018, 1–10. https://doi.org/10.1155/2018/9504807.

    CAS  Article  Google Scholar 

  4. Adeyemi, S., Adeleye, S., Conway, J., Garner, K., Huang, Y., Su, Y., et al. (2016). Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chemical Engineering Journal, 286, 640–662. https://doi.org/10.1016/10.1016/j.cej.2015.10.105.

    Article  Google Scholar 

  5. Afkhami, A., Saber-Tehrani, M., & Bagheri, H. (2010). Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. Journal of Hazardous Materials, 181(1–3), 836–844. https://doi.org/10.1016/j.jhazmat.2010.05.089.

    CAS  Article  Google Scholar 

  6. Ahalya, N., VRamachandra, T., & Kanamadi, R. D. (2007). Biosorption of heavy metals.

    Google Scholar 

  7. Ahmad, I., Siddiqui, W., & Ahmad, T. (2017). Synthesis, characterization of silica nanoparticles and adsorption removal of Cu2+ ions in aqueous solution. International Journal of Emerging Technology and Advanced Engineering, 7, (8). Retrieved from: https://www.researchgate.net/publication/319711150_Synthesis_Characterization_of_Silica_Nanoparticles_and_Adsorption_Removal_of_Cu_2_Ions_in_Aqueous_Soluti.

  8. Akpor, O. B. (2014). Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Advances in Bioscience and Bioengineering, 2(4), 37–43. https://doi.org/10.11648/j.abb.20140204.11.

    Article  Google Scholar 

  9. Al Hamouz, O. C. S., Adelabu, I. O., & Saleh, T. A. (2017). Novel cross-linked melamine based polyamine/CNT composites for lead ions removal. Journal of Environmental Management, 192, 163–170. https://doi.org/10.1016/j.jenvman.2017.01.056.

    CAS  Article  Google Scholar 

  10. Alagappan, P. N., Heimann, J., Morrow, L., Andreoli, E., & Barron, A. R. (2017). Easily regenerated readily deployable absorbent for heavy metal removal from contaminated water. Scientific Reports, 7(1), 6682. https://doi.org/10.1038/s41598-017-06734-7.

    CAS  Article  Google Scholar 

  11. Alalwan, H. A., Kadhom, M. A., & Alminshid, A. H. (2020). Removal of heavy metals from wastewater using agricultural byproducts. Journal of Water Supply: Research and Technology-AQUA, 69(2), 99–112. https://doi.org/10.2166/aqua.2020.133.

    Article  Google Scholar 

  12. Alekseeva, O. V., Bagrovskaya, N. A., Noskov, A. V. (2016) Sorption of heavy metal ions by fullerene and polystyrene/fullerene film compositions. Protection of Metals and Physical Chemistry of Surfaces, 52(3), 443–447.

  13. Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., et al. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. https://doi.org/10.2147/NSA.S99986.

    CAS  Article  Google Scholar 

  14. Aliabadi, M., Irani, M., Ismaeili, J., Piri, H., & Parnian, M. J. (2013). Electrospun nanofiber membrane of PEO/chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chemical Engineering Journal, 220, 237–243. https://doi.org/10.1016/j.cej.2013.01.021.

    CAS  Article  Google Scholar 

  15. Al-Khaldi, F. A., Abu-Sharkh, B., Abulkibash, A. M., & Atieh, M. A. (2013). Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study. Desalination and Water Treatment, 53(5), 417–1429. https://doi.org/10.1080/19443994.2013.847805.

    CAS  Article  Google Scholar 

  16. Al-Malack, M. H., & Basaleh, A. A. (2016). Adsorption of heavy metals using activated carbon produced from municipal organic solid waste. Desalination and Water Treatment, 57(51), 24519–24531. https://doi.org/10.1080/19443994.2016.1144536.

    CAS  Article  Google Scholar 

  17. Almasian, A., Najafi, F., Maleknia, L., & Giahi, M. (2018). Mesoporous MgO/PPG hybrid nanofibers: synthesis, optimization, characterization and heavy metal removal property. New Journal of Chemistry, 42(3), 2013–2029. https://doi.org/10.1039/c7nj03200e.

    CAS  Article  Google Scholar 

  18. Al-Shahrani, S. S. (2014). Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alexandria Engineering Journal, 53(1), 205–211. https://doi.org/10.1016/j.aej.2013.10.006.

    Article  Google Scholar 

  19. Amrollahi-Sharifabadi, M., Koohi, M. K., Zayerzadeh, E., Hablolvarid, M. H., Hassan, J., & Seifalian, A. M. (2018). In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. International Journal of Nanomedicine, 13, 4757–4769. https://doi.org/10.2147/ijn.S168731.

    CAS  Article  Google Scholar 

  20. Asghari, S., Johari, S. A., Lee, J. H., Kim, Y. S., Jeon, Y. B., Choi, H. J., et al. (2012). Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology, 10(14). https://doi.org/10.1016/j.nano.2007.02.001.

  21. Askari, P., Faraji, A., Khayatian, G., & Mohebbi, S. (2016). Effective ultrasound-assisted removal of heavy metal ions As (III), Hg (II), and Pb (II) from aqueous solution by new MgO/CuO and MgO/MnO2 nanocomposites. Journal of the Iranian Chemical Society, 14(3), 613–621. https://doi.org/10.1007/s13738-016-1011-y.

    CAS  Article  Google Scholar 

  22. Ayati, A., Tanhaei, B., & Sillanpa, M. (2016). Lead (II)-ion removal by ethylenediaminetetraacetic acid ligand functionalized magnetic chitosan–aluminum oxide–iron oxide nanoadsorbents and microadsorbents: equilibrium, kinetics, and thermodynamics. Applied Polymer Science, 134(4), 44360–44310. https://doi.org/10.1002/APP.44360.

    Article  Google Scholar 

  23. Ayoub, G. M., & Mehawej, M. (2007). Adsorption of arsenate on untreated dolomite powder. Journal of Hazardous Materials, 148(1–2), 259–266. https://doi.org/10.1016/j.jhazmat.2007.02.011.

    CAS  Article  Google Scholar 

  24. Ayoub, G. M., & Sayigh, B. (1987). The effects and removal of chromium in Chlamydomonas sp. Toxicity Assessment An International Quarterly, 2, 253–264.

    CAS  Google Scholar 

  25. Ayoub, G. M., Member, A., Semerjian, L., Acra, A., Fadel, M. E., & Koopman5, B. (2001). Heavy metal removal by coagulation with seawater liquid bittern. Journal of Environmental Engineering, 127 (3). https://doi.org/10.1061/(ASCE)0733-9372(2001)127:3(196).

  26. Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010.

    CAS  Article  Google Scholar 

  27. Babel, S. (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials 97(1-3), 219–243.

  28. Baby, R., Saifullah, B., & Hussein, M. Z. (2019). Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Research Letters, 14(1). https://doi.org/10.1186/s11671-019-3167-8.

  29. Basu-Dutt, S., Minus, M. L., Jain, R., Nepal, D., & Kumar, S. (2011). Chemistry of carbon nanotubes for everyone. Journal of Chemical Education, 89(2), 221–229. https://doi.org/10.1021/ed1005163.

    CAS  Article  Google Scholar 

  30. Bhati, M., & Rai, R. (2017). Nanotechnology and water purification: Indian know-how and challenges. Environmental Science and Pollution Research International, 24(30), 23423–23435. https://doi.org/10.1007/s11356-017-0066-3.

    Article  Google Scholar 

  31. Bianco, A. (2013). Graphene: safe or toxic? The two faces of the medal. Angewandte Minireviews, 52, 2–14. https://doi.org/10.1002/anie.201209099.

    CAS  Article  Google Scholar 

  32. Blais, J. F., Shen, S., Meunier, N., & Tyagi, R. D. (2003). Comparison of natural adsorbents for metal removal from acidic effluent. Environmental Technology, 24(2), 205–215. https://doi.org/10.1080/09593330309385552.

    CAS  Article  Google Scholar 

  33. Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., et al. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicology and Environmental Safety, 148, 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034.

    CAS  Article  Google Scholar 

  34. Cai, Y., Li, C., Wu, D., Wang, W., Tan, F., Wang, X., et al. (2017). Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chemical Engineering Journal, 312, 158–166. https://doi.org/10.1016/j.cej.2016.11.134.

    CAS  Article  Google Scholar 

  35. Chae, S.-R., Wang, S., Hendren, Z. D., Wiesner, M. R., Watanabe, Y., & Gunsch, C. K. (2009). Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. Journal of Membrane Science, 329(1–2), 68–74. https://doi.org/10.1016/j.memsci.2008.12.023.

    CAS  Article  Google Scholar 

  36. Chakraborty, A., Deva, D., Sharma, A., & Verma, N. (2011). Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water. Journal of Colloid and Interface Science, 359(1), 228–239. https://doi.org/10.1016/j.jcis.2011.03.057.

    CAS  Article  Google Scholar 

  37. Chandra, D., Das, S. K., & Bhaumik, A. (2010). A fluorophore grafted 2D-hexagonal mesoporous organosilica: excellent ion-exchanger for the removal of heavy metal ions from wastewater. Microporous and Mesoporous Materials, 128(1–3), 34–40. https://doi.org/10.1016/j.micromeso.2009.07.024.

    CAS  Article  Google Scholar 

  38. Chikumbusko, C. K., Ishmael, B. K., Deliwe, D. L., Rex, M., Benard, T., Morris, M., et al. (2017). A review of heavy metals in soil and aquatic systems of urban and semi-urban areas in Malawi with comparisons to other selected countries. African Journal of Environmental Science and Technology, 11(9), 448–460. https://doi.org/10.5897/ajest2017.2367.

    CAS  Article  Google Scholar 

  39. Cho, W. S., Cho, M., Jeong, J., Choi, M., Cho, H. Y., Han, B. S., et al. (2009). Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicology and Applied Pharmacology, 236(1), 16–24. https://doi.org/10.1016/j.taap.2008.12.023.

    CAS  Article  Google Scholar 

  40. Choi, K., Lee, S., Park, J.-O., Park, J.-A., So-Hye Cho, S., Lee, S., et al. (2018). Chromium removal fromaqueous solution by a PEI-silica nanocomposite. Natural Scientific Reports, 8, 1438. https://doi.org/10.1038/s41598-018-20017-9.

    CAS  Article  Google Scholar 

  41. Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., & Husain, T. (2016). Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Science of the Total Environment, 569-570, 476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166.

    CAS  Article  Google Scholar 

  42. Chowdhury, I. H., Kundu, S., & Naskar, M. K. (2018). Template-free hydrothermal synthesis of MgO-TiO2 microcubes toward high potential removal of toxic water pollutants. Journal of Physics and Chemistry of Solids, 112, 171–178. https://doi.org/10.1016/j.jpcs.2017.09.021.

    CAS  Article  Google Scholar 

  43. Ciotta, E., Prosposito, P., Tagliatesta, P., Lorecchio, C., Stella, L., Kaciulis, S., et al. (2018). Discriminating between different heavy metal ions with fullerene-derived nanoparticles. Sensors, 18, 1496. https://doi.org/10.3390/s18051496.

    CAS  Article  Google Scholar 

  44. Ciotta, E., Prosposito, P., Moscone, D., Colozza, N., & Pizzoferrato, R. (2019). Detection and removal of heavy-metal ions in water by unfolded-fullerene nanoparticles. (Paper presented at the 15th international conference on concentrator photovoltaic systems (CPV-15)).

  45. Clemente, Z., Castro, V., Jonsson, C. M., & Fraceto, L. F. (2011). Ecotoxicology of nano-TiO2 – an evaluation of its toxicity to organisms of aquatic ecosystems. International Journal of Environmental Resources, 6, 33–50.

    Google Scholar 

  46. Crini, G., Lichtfouse, E., Wilson, L. D., & Morin-Crini, N. (2018). Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17(1), 195–213. https://doi.org/10.1007/s10311-018-0786-8.

    CAS  Article  Google Scholar 

  47. Da’na, E. (2017). Adsorption of heavy metals on functionalized-mesoporous silica: a review. Microporous and Mesoporous Materials, 247, 145–157.

    Article  Google Scholar 

  48. Dahaghin, Z., Mousavi, H. Z., & Sajjadi, M. (2018). Synthesis and application of a novel magnetic SBA-15 nanosorbent for heavy metal removal from aqueous solutions. Journal of Sol-Gel Science and Technology, 86(1), 217–225. https://doi.org/10.1007/s10971-018-4581-6.

    CAS  Article  Google Scholar 

  49. Das, R., Leo, B. F., & Murphy, F. (2018). The toxic truth about carbon nanotubes in water purification: a perspective view. Nanoscale Research Letters, 13(1). https://doi.org/10.1186/s11671-018-2589-z.

  50. De Repentigny, C., Courcelles, B., & Zagury, G. J. (2018). Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-018-2414-3.

  51. Deliyanni, E. A., Bakoyannakis, D. N., Zouboulis, A. I., & Matis, K. A. (2002). Sorption of As(V) ions by akaganeite-type nanocrystals. Chemosphere, 50. https://doi.org/10.1016/s0045-6535(02)00351-x.

  52. Deng, J.-H., Zhang, X.-R., Zeng, G.-M., Gong, J.-L., Niu, Q.-Y., & Liang, J. (2013). Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chemical Engineering Journal, 226, 189–200. https://doi.org/10.1016/j.cej.2013.04.045.

    CAS  Article  Google Scholar 

  53. Dinh, V.-P., Le, N.-C., Tuyen, L. A., Hung, N. Q., Nguyen, V.-D., & Nguyen, N.-T. (2018). Insight into adsorption mechanism of lead (II) from aqueous solution by chitosan loaded MnO2 nanoparticles. Materials Chemistry and Physics, 207, 294–302. https://doi.org/10.1016/j.matchemphys.2017.12.071.

    CAS  Article  Google Scholar 

  54. Drobne, D., Jemec, A., & Pipan Tkalec, Z. (2009). In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environmental Pollution, 157(4), 1157–1164. https://doi.org/10.1016/j.envpol.2008.10.018.

    CAS  Article  Google Scholar 

  55. Eftekhari, E., Hasani, H., & Fashandi, H. (2019). Removal of heavy metal ions (Pb2+ and Ni2+) from aqueous solution using nonwovens produced from lignocellulosic milkweed fibers. Journal of Industrial Textiles. https://doi.org/10.1177/1528083719888931.

  56. Einollahi Peer, F., Bahramifar, N., & Younesi, H. (2018). Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets. Journal of the Taiwan Institute of Chemical Engineers, 87, 225–240. https://doi.org/10.1016/j.jtice.2018.03.039.

    CAS  Article  Google Scholar 

  57. El-Sayed, M., Eshaq, Gh., ElMetwally, A. E. (2016) Adsorption of heavy metals from aqueous solutions by Mg–Al–Zn mingled oxides adsorbent. Water Science and Technology 74(7), 1644–1657.

  58. Engates, K. E., & Shipley, H. J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research International, 18(3), 386–395. https://doi.org/10.1007/s11356-010-0382-3.

    CAS  Article  Google Scholar 

  59. Fadeel, B., Albin, M., Alenius, H., & Plamberg, L. (2018a). Nanotoxicity state-of-the-art and future research needs. Institute of Environmental Medicine. IMM rapport nr. 1 – 2018.

  60. Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., et al. (2018b). Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano, 12(11), 10582–10620. https://doi.org/10.1021/acsnano.8b04758.

    CAS  Article  Google Scholar 

  61. Fan, H. L., Zhou, S. F., Jiao, W. Z., Qi, G. S., & Liu, Y. Z. (2017). Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydrate Polymers, 174, 1192–1200. https://doi.org/10.1016/j.carbpol.2017.07.050.

    CAS  Article  Google Scholar 

  62. Farghali, A. A., Abdel Tawab, H. A., Abdel Moaty, S. A., & Khaled, R. (2017). Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 7(2), 101–111. https://doi.org/10.1007/s40097-017-0227-4.

    CAS  Article  Google Scholar 

  63. Felczak, A., Wrońska, N., Janaszewska, A., Klajnert, B., Bryszewska, M., Appelhans, D., et al. (2012). Antimicrobial activity of poly (propylene imine) dendrimers. New Journal of Chemistry, 36(11). https://doi.org/10.1039/c2nj40421d.

  64. Franco, F., Benítez-Guerrero, M., Gonzalez-Triviño, I., Pérez-Recuerda, R., Assiego, C., Cifuentes-Melchor, J., et al. (2016). Low-cost aluminum and iron oxides supported on dioctahedral and trioctahedral smectites: a comparative study of the effectiveness on the heavy metal adsorption from water. Applied Clay Science, 119, 321–332.

    CAS  Article  Google Scholar 

  65. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.

    CAS  Article  Google Scholar 

  66. Fu, F., Chen, R., & Xiong, Y. (2006). Application of a novel strategy—coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters. Separation and Purification Technology, 52(2), 388–393. https://doi.org/10.1016/j.seppur.2006.05.017.

    CAS  Article  Google Scholar 

  67. Fu, F., Chen, R., & Xiong, Y. (2007). Comparative investigation of N,N’-bis-(dithiocarboxy) piperazine and diethyldithiocarbamate as precipitants for Ni (II) in simulated wastewater. Journal of Hazardous Materials, 142(1–2), 437–442. https://doi.org/10.1016/j.jhazmat.2006.08.036.

    CAS  Article  Google Scholar 

  68. Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology, 84(1), 13–28. https://doi.org/10.1002/jctb.1999.

    CAS  Article  Google Scholar 

  69. García-Díaz, I., López, F., & Alguacil, F. (2018). Carbon nanofibers: a new adsorbent for copper removal from wastewater. Metals, 8(11). https://doi.org/10.3390/met8110914.

  70. Gehrke, I., Keuter, V., & Groß, F. (2012). Development of nanocomposite membranes with photocatalytic surfaces. Journal of Nanoscience and Nanotechnology, 12(12), 9163–9168. https://doi.org/10.1166/jnn.2012.6740.

    CAS  Article  Google Scholar 

  71. Gehrke, I., Geiser, A., & Somborn-Schulz, A. (2015). Innovations in nanotechnology for water treatment. Nanotechnology, Science and Applications, 8, 1–17. https://doi.org/10.2147/NSA.S43773.

    CAS  Article  Google Scholar 

  72. Ghaemi, N. (2015). A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Applied Surface Science, 364, 221–228. https://doi.org/10.1016/j.apsusc.2015.12.109.

    CAS  Article  Google Scholar 

  73. Ghasemi, E., Heydari, A., & Sillanpää, M. (2017). Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from water and soil environmental samples. Microchemical Journal, 131, 51–56. https://doi.org/10.1016/j.microc.2016.11.011.

    CAS  Article  Google Scholar 

  74. Gil, A., Amiri, M. J., Abedi-Koupai, J., & Eslamian, S. (2017). Adsorption/reduction of Hg (II) and Pb (II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions. Environmental Science and Pollution Research, 25, 2814–2829. https://doi.org/10.1007/s11356-017-0508-y.

    CAS  Article  Google Scholar 

  75. Gładysz-Płaska, A., Skwarek, E., Budnyak, T. M., & Kołodyńska, D. (2017). Metal ions removal using nano oxide Pyrolox™ material. Nanoscale Research Letters, 12(1). https://doi.org/10.1186/s11671-017-1870-x.

  76. Gong, J., Liu, T., Wang, X., Hu, X., & Zhang, L. (2011). Efficient removal of heavy metal ions from aqueous systems with the assembly of anisotropic layered double hydroxide nanocrystals@carbon nanosphere. Environmental Science & Technology, 45(14), 6181–6187. https://doi.org/10.1021/es200668q.

    CAS  Article  Google Scholar 

  77. Hayati, B., Mahmoodi, N. M., & Maleki, A. (2013). Dendrimer–titania nanocomposite: synthesis and dye-removal capacity. Research on Chemical Intermediates, 41(6), 3743–3757. https://doi.org/10.1007/s11164-013-1486-4.

    CAS  Article  Google Scholar 

  78. Hayati, B., Maleki, A., Najafi, F., Daraei, H., Gharibi, F., & McKay, G. (2017). Super high removal capacities of heavy metals (Pb(2+) and Cu(2+)) using CNT dendrimer. Journal of Hazardous Materials, 336, 146–157. https://doi.org/10.1016/j.jhazmat.2017.02.059.

    CAS  Article  Google Scholar 

  79. He, K., Chen, Y., Tang, Z., & Hu, Y. (2016). Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environmental Science Pollution, 23, 2778–2788. https://doi.org/10.1007/s11356-015-5422-6.

    CAS  Article  Google Scholar 

  80. He, Y., Luo, L., Liang, S., Long, M., & Xu, H. (2018). Synthesis of mesoporous silica-calcium phosphate hybrid nanoparticles and their potential as efficient adsorbent for cadmium ions removal from aqueous solution. Journal of Colloid and Interface Science, 525, 126–135. https://doi.org/10.1016/j.jcis.2018.04.037.

    CAS  Article  Google Scholar 

  81. Hong, H., Yang, J., Yang, J., & Jeong, H. (2017). Highly enhanced heavy metal adsorption performance of iron oxide (Fe-oxide) upon incorporation of aluminum. Materials Transactions, 58, 71–75.

    CAS  Article  Google Scholar 

  82. Hu, J., Chen, G., Lo, I. M. C., & M.ASCE. (2006). Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. Journal of Environmental Engineering, 132, 709–715. https://doi.org/10.1061//ASCE/0733-9372/2006/132:7/709.

    CAS  Article  Google Scholar 

  83. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211-212, 317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016.

    CAS  Article  Google Scholar 

  84. Huang, Z., Wu, P., Gong, B., Dai, Y., Chiang, P., Lai, X., et al. (2016). Efficient removal of Co2+ from aqueous solution by 3-aminopropyltriethoxysilane functionalized montmorillonite with enhanced adsorption capacity. PLoS One. https://doi.org/10.1371/journal.pone.0159802.

  85. Huang, D., Hu, Z., Peng, Z., Zeng, G., Chen, G., Zhang, C., et al. (2018). Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating. Journal of Environmental Management, 210, 191–200. https://doi.org/10.1016/j.jenvman.2018.01.001.

    CAS  Article  Google Scholar 

  86. Iannazzo, D., Pistone, A., Ziccarelli, I., Espro, C., Galvagno, S., Salvatore, V., Giofre, S., et al. (2017). Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes. Environmental Science Resources. https://doi.org/10.1007/s11356-017-9086-2.

  87. Ihsanullah, A. A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., et al. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, 141–161. https://doi.org/10.1016/j.seppur.2015.11.039.

    CAS  Article  Google Scholar 

  88. Ince, M., & Ince, O. K. (2017). An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review. International Journal of Pure Applied Science (IJPAS), 3(2), 10–19.

    Article  Google Scholar 

  89. Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., et al. (2015). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433. https://doi.org/10.1080/10643389.2015.1096880.

    CAS  Article  Google Scholar 

  90. Islam, M. S., Choi, W. S., Nam, B., Yoon, C., & Lee, H.-J. (2017). Needle-like iron oxide@CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chemical Engineering Journal, 307, 208–219. https://doi.org/10.1016/j.cej.2016.08.079.

    CAS  Article  Google Scholar 

  91. Jabeen, H., Kemp, K., & Chandra, V. (2013). Synthesis of nano zerovalent iron nanoparticles–graphene composite for the treatment of lead contaminated water. Environmental Management, 130, 429–435. https://doi.org/10.1016/j.jenvman.2013.08.022.

    CAS  Article  Google Scholar 

  92. Jackson, P., Jacobsen, N. R., Baun, A., Birkedal, R., Kühnel, D., Jensen, K. A., et al. (2013). Bioaccumulation and ecotoxicity of carbon nanotubes. Chemistry Central Journal, 7, 154.

    Article  Google Scholar 

  93. Jain, M., Yadav, M., Kohout, T., Lahtinen, M., Garg, V. K., & Sillanpää, M. (2018). Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr (VI), Cu (II) and Cd (II) ions from aqueous solution. Water Resources and Industry, 20, 54–74. https://doi.org/10.1016/j.wri.2018.10.001.

    Article  Google Scholar 

  94. Ji, S., Miao, C., Liu, H., Feng, L., Yang, X., & Guo, H. (2018). A hydrothermal synthesis of Fe3O4@C hybrid nanoparticle and magnetic adsorptive performance to remove heavy metal ions in aqueous solution. Nanoscale Research Letters, 13(1). https://doi.org/10.1186/s11671-018-2580-8.

  95. Ju-Nam, Y., & Lead, J. R. (2008). Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment, 400(1–3), 396–414. https://doi.org/10.1016/j.scitotenv.2008.06.042.

    CAS  Article  Google Scholar 

  96. Kabbashi, N. A., Atieh, M. A., Al-Mamun, A., Mirghami, M. E. S., Alam, M. D. Z., & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb (II) removal from aqueous solution. Journal of Environmental Sciences, 21(4), 539–544. https://doi.org/10.1016/s1001-0742(08)62305-0.

    CAS  Article  Google Scholar 

  97. Kanamarlapudi, S. L. R. K., Chintalpudi, V. K., & Muddada, S. (2018). Application of biosorption for removal of heavy metals from wastewater. Biosorption. https://doi.org/10.5772/intechopen.77315.

  98. Ke, T., Guo, H., Zhang, Y., & Liu, Y. (2017). Photoreduction of Cr (VI) in water using BiVO4-Fe3O4 nano-photocatalyst under visible light irradiation. Environmental Science and Pollution Research International, 24(36), 28239–28247. https://doi.org/10.1007/s11356-017-0255-0.

    CAS  Article  Google Scholar 

  99. Kheshtzar, I., Ghorbani, M., Gatabi, M., & Lashkenari, M. (2018). Facile synthesis of smartaminosilane modified- SnO2/porous silica nanocomposite for high efficiency removal of lead ions and bacterial inactivation. Journal of Hazardous Materials, 359(19–30). https://doi.org/10.1016/j.jhazmat.2018.07.028

  100. Kim, K., & Park, J. (2017). Stability and reusability of amine-functionalized magnetic-cored dendrimer for heavy metal adsorption. Journal of Materials Science, 52, 843–857.

    CAS  Article  Google Scholar 

  101. Kim, Y. C., Han, S., & Hong, S. (2011). A feasibility study of magnetic separation of magnetic nanoparticle for forward osmosis. Water Science & Technology, 64(2). https://doi.org/10.2166/wst.2011.566.

  102. Klekotka, U., Wińska, E., Zambrzycka-Szelewa, E., Satuła, D., & Kalska-Szostko, B. (2018). Heavy-metal detectors based on modified ferrite nanoparticles. Beilstein Journal of Nanotechnology, 9, 762–770. https://doi.org/10.3762/bjnano.9.69.

    CAS  Article  Google Scholar 

  103. Kobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92–107. https://doi.org/10.1016/j.ccr.2017.12.010.

    CAS  Article  Google Scholar 

  104. Kong, L., Li, Z., Huang, X., Huang, S., Sun, H., Liu, M., et al. (2017). Efficient removal of Pb (II) from water using magnetic Fe3S4/reduced graphene oxide composites. Journal of Materials Chemistry A, 5(36), 19333–19342. https://doi.org/10.1039/c7ta05389d.

    CAS  Article  Google Scholar 

  105. Kumar, R., Khan, M. A., & Haq, N. (2014a). Application of carbon nanotubes in heavy metals remediation. Critical Reviews in Environmental Science and Technology, 44(9), 1000–1035. https://doi.org/10.1080/10643389.2012.741314.

    CAS  Article  Google Scholar 

  106. Kumar, S., Nair, R. R., Pillai, P. B., Gupta, S. N., Iyengar, M. A. R., & Sood, A. K. (2014b). Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Applied Materials & Interfaces, 6(20), 17426–17436. https://doi.org/10.1021/am504826q.

    CAS  Article  Google Scholar 

  107. Kuvarega, A. T., & Mamba, B. B. (2016). TiO2-based photocatalysis: toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites. Critical Reviews in Solid State and Materials Sciences, 42(4), 295–346. https://doi.org/10.1080/10408436.2016.1211507.

    CAS  Article  Google Scholar 

  108. Laurila, T., Sainio, S., & Caro, M. A. (2017). Hybrid carbon based nanomaterials for electrochemical detection of biomolecules. Progress in Materials Science, 88, 499–594. https://doi.org/10.1016/j.pmatsci.2017.04.012.

    CAS  Article  Google Scholar 

  109. Le, A. T., Pung, S.-Y., Sreekantan, S., Matsuda, A., & Huynh, D. P. (2019). Mechanisms of removal of heavy metal ions by ZnO particles. Heliyon, 5(4). https://doi.org/10.1016/j.heliyon.2019.e01440.

  110. Lee, L. Z., Zaini, M. A. A., & Tang, S. H. (2019). Porous nanomaterials for heavy metal removal. Handbook of ecomaterials, 469–494. https://doi.org/10.1007/978-3-319-68255-6_27.

  111. Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J., & Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal, 44(1), 19–41. https://doi.org/10.1016/j.bej.2008.12.009.

    CAS  Article  Google Scholar 

  112. Li, J., & Pandey, G. P. (2015). Advanced physical chemistry of carbon nanotubes. Annual Review of Physical Chemistry, 66, 331–356. https://doi.org/10.1146/annurev-physchem-040214-121535.

    CAS  Article  Google Scholar 

  113. Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 16(14), 1151–1170. https://doi.org/10.1002/adma.200400719.

    CAS  Article  Google Scholar 

  114. Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., et al. (2002). Lead adsorption on carbon nanotubes. Chemical Physics Letters 357, 263–266. https://doi.org/10.1016/S0009-2614(02)00502-X.

  115. Li, L., Wang, F., Lv, Y., Liu, J., Zhang, D., & Shao, Z. (2018). Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes. Applied Clay Science, 161, 225–234. https://doi.org/10.1016/j.clay.2018.04.002.

    CAS  Article  Google Scholar 

  116. Lim, A. P., & Aris, A. Z. (2013). A review on economically adsorbents on heavy metals removal in water and wastewater. Reviews in Environmental Science and Bio/Technology, 13(2), 163–181. https://doi.org/10.1007/s11157-013-9330-2.

    CAS  Article  Google Scholar 

  117. Lim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — a review. Journal of Industrial and Engineering Chemistry, 66, 29–44. https://doi.org/10.1016/j.jiec.2018.05.028.

    CAS  Article  Google Scholar 

  118. Lingamdinne, L. P., Koduru, J. R., Choi, Y.-L., Chang, Y.-Y., & Yang, J.-K. (2016). Studies on removal of Pb (II) and Cr (III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy, 165, 64–72. https://doi.org/10.1016/j.hydromet.2015.11.005.

    CAS  Article  Google Scholar 

  119. Lingamdinne, L. P., Chang, Y.-Y., Yang, J.-K., Singh, J., Choi, E.-H., Shiratani, M., et al. (2017). Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chemical Engineering Journal, 307, 74–84. https://doi.org/10.1016/j.cej.2016.08.067.

    CAS  Article  Google Scholar 

  120. Liu, J. F., Zhao, Z.-S., & Jiang, G.-B. (2008). Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. American Chemical Society, 43(18). https://doi.org/10.1021/es800924c.

  121. Lu, L., Wang, K., & SZhao, X. (2007). Effect of operation conditions on the removal of Pb2+ by microporous titanosilicate ETS-10 in a fixed bed column. Journal of Colloid and Interface Science, 305(2), 218–225.

    Article  Google Scholar 

  122. Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., & Hao, H. (2016). An overview of nanomaterials for water and wastewater treatment. Advances in Materials Science and Engineering, 2016, 1–10. https://doi.org/10.1155/2016/4964828.

    CAS  Article  Google Scholar 

  123. Magri, D., Caputo, G., Perotto, G., Scarpellini, A., Colusso, E., Drago, F., et al. (2018). Titanate fibroin nanocomposites: a novel approach for the removal of heavy-metal ions from water. ACS Applied Materials & Interfaces, 10(1), 651–659. https://doi.org/10.1021/acsami.7b15440.

    CAS  Article  Google Scholar 

  124. Mahdavi, S. (2015). Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+2, Cu+2, and Ni+2 from water. Clean Technologies and Environmental Policy, 18(1), 81–94. https://doi.org/10.1007/s10098-015-0993-y.

    CAS  Article  Google Scholar 

  125. Mahdavi, S., Jalali, M., & Afkhami, A. (2013). Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chemical Engineering Communications, 200(3), 448–470. https://doi.org/10.1080/00986445.2012.686939.

    CAS  Article  Google Scholar 

  126. Mahendran, B., Lin, H., Liao, B., & Liss, S. N. (2011). Surface properties of biofouled membranes from a submerged anaerobic membrane bioreactor after cleaning. Journal of Environmental Engineering, 137(6), 504–513. https://doi.org/10.1061/(asce)ee.1943-7870.0000341.

    CAS  Article  Google Scholar 

  127. Mahmoud, M. E., Saad, E. A., El-Khatib, A. M., Soliman, M. A., & Allam, E. A. (2018). Adsorptive removal of radioactive isotopes of cobalt and zinc from water and radioactive wastewater using TiO2/Ag2O nanoadsorbents. Progress in Nuclear Energy, 106, 51–63. https://doi.org/10.1016/j.pnucene.2018.02.021.

    CAS  Article  Google Scholar 

  128. Malaeb, L., & Ayoub, G. M. (2011). Reverse osmosis technology for water treatment: state of the art review. Desalination, 267(1), 1–8. https://doi.org/10.1016/j.desal.2010.09.001.

    CAS  Article  Google Scholar 

  129. Malaeb, L., Le-Clech, P., Vrouwenvelder, J. S., Ayoub, G. M., & Saikaly, P. E. (2013). Do biological-based strategies hold promise to biofouling control in MBRs? Water Research, 47(15), 5447–5463. https://doi.org/10.1016/j.watres.2013.06.033.

    CAS  Article  Google Scholar 

  130. Malayoglu, U. (2018). Removal of heavy metals by biopolymer (chitosan)/nanoclay composites. Separation Science and Technology. https://doi.org/10.1080/01496395.2018.1471506.

  131. Masoudi, A., & Honarasa, F. (2018). C-dots/Fe3O4 magnetic nanocomposite as nanoadsorbent for removal of heavy metal cations. Journal of the Iranian Chemical Society, 15(5), 1199–1205. https://doi.org/10.1007/s13738-018-1318-y.

  132. Masud, A., Cui, Y., Atkinson, J. D., & Aich, N. (2018). Shape matters: Cr (VI) removal using iron nanoparticle impregnated 1-D vs 2-D carbon nanohybrids prepared by ultrasonic spray pyrolysis. Journal of Nanoparticle Research, 20(3). https://doi.org/10.1007/s11051-018-4172-z.

  133. Modi, A., Bhaduri, B., & Verma, N. (2015). Facile one-step synthesis of nitrogen-doped carbon nanofibers for the removal of potentially toxic metals from water. Industrial & Engineering Chemistry Research, 54(18), 5172–5178. https://doi.org/10.1021/ie505016d.

    CAS  Article  Google Scholar 

  134. Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: recent advances and future prospects. Desalination, 356, 226–254. https://doi.org/10.1016/j.desal.2014.10.043.

    CAS  Article  Google Scholar 

  135. Mohammad R. F., Dadkhah, A. A., Rashidi, A., Tasharofi, S., Mansourkhani, F. (2018) Newly MOF-Graphene Hybrid Nanoadsorbent for Removal of Ni(II) from Aqueous Phase. Journal of Inorganic and Organometallic Polymers and Materials 28(3), 829–836.

  136. Mohd Salim, R., Khan Chowdhury, A. J., Rayathulhan, R., Yunus, K., & Sarkar, M. Z. I. (2015). Biosorption of Pb and Cu from aqueous solution using banana peel powder. Desalination and Water Treatment, 1–12. https://doi.org/10.1080/19443994.2015.1091613.

  137. Mokadem, Z., Mekki, S., Saïdi-Besbes, S., Agusti, G., Elaissari, A., & Derdour, A. (2017). Triazole containing magnetic core-silica shell nanoparticles for Pb 2+ , Cu 2+ and Zn 2+ removal. Arabian Journal of Chemistry, 10(8), 1039–1051. https://doi.org/10.1016/j.arabjc.2016.12.008.

    CAS  Article  Google Scholar 

  138. Mubarak, N. M., Sahu, J. N., Abdullah, E. C., & Jayakumar, N. S. (2013). Removal of heavy metals from wastewater using carbon nanotubes. Separation & Purification Reviews, 43(4), 311–338. https://doi.org/10.1080/15422119.2013.821996.

    CAS  Article  Google Scholar 

  139. Mubarak, N., Thobashinni, M., Abdullah, E., & Sahu, J. (2016). C, 2(1). https://doi.org/10.3390/c2010007.

  140. Muhamad, N., Abdullah, N., Rahman, M., Abas, K., Aziz, A., Othman, M., Jaafar, J., et al. (2018). Removal of nickel from aqueous solution using supported zeolite-Y hollow fiber membranes. Environmental Science and Pollution Research, 25, 9054–19064.

    Article  Google Scholar 

  141. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8.

    CAS  Article  Google Scholar 

  142. Nagarajah, R., Wong, K. T., Lee, G., Chu, K. H., Yoon, Y., Kim, N. C., et al. (2017). Synthesis of a unique nanostructured magnesium oxide coated magnetite cluster composite and its application for the removal of selected heavy metals. Separation and Purification Technology, 174, 290–300. https://doi.org/10.1016/j.seppur.2016.11.008.

    CAS  Article  Google Scholar 

  143. Nassar, N. N. (2010). Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. Journal of Hazardous Materials, 184(1–3), 538–546. https://doi.org/10.1016/j.jhazmat.2010.08.069.

    CAS  Article  Google Scholar 

  144. Nassar, N. (2013). The application of nanoparticles for wastewater remediation. Book chapter, Future Science.

  145. Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    CAS  Article  Google Scholar 

  146. Neranon, K., & Ramström, O. (2016). Kinetics and thermodynamics of constitutional dynamic coordination systems based on FeII, CoII, NiII, CuII, and ZnII. European Journal of Inorganic Chemistry, 2016(24), 3950–3956. https://doi.org/10.1002/ejic.201600331.

    CAS  Article  Google Scholar 

  147. Nyankson, E., Annan, E., Agyei-Tuffour, B., Bensah, Y. D., Konadu, D. S., Yaya, A., et al. (2018). Application of clay ceramics and nanotechnology in water treatment: a review. Cogent Engineering, 5(1). https://doi.org/10.1080/23311916.2018.1476017.

  148. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., et al. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16(6–7), 437–445. https://doi.org/10.1080/08958370490439597.

    CAS  Article  Google Scholar 

  149. Pan, B., & Xing, B. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 42(24). https://doi.org/10.1021/es801777n.

  150. Pendergast, M. T. M., Nygaard, J. M., Ghosh, A. K., & Hoek, E. M. V. (2010). Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination, 261(3), 255–263. https://doi.org/10.1016/j.desal.2010.06.008.

    CAS  Article  Google Scholar 

  151. Petersen, E. J., Zhang, L., Mattison, N. T., O’Carroll, D. M., Whelton, A. J., Uddin, N., et al. (2011). Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environmental Science & Technology, 45(23), 9837–9856. https://doi.org/10.1021/es201579y.

    CAS  Article  Google Scholar 

  152. Pyrzyńska, K., & Bystrzejewski, M. (2010). Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 362(1–3), 102–109. https://doi.org/10.1016/j.colsurfa.2010.03.047.

    CAS  Article  Google Scholar 

  153. Qian, L., Zhang, W., Yan, J., Han, L., Chen, Y., Ouyang, D., et al. (2017). Nanoscale zero-valent iron supported by biochars produced at different temperatures: synthesis mechanism and effect on Cr (VI) removal. Environmental Pollution, 223, 153–160. https://doi.org/10.1016/j.envpol.2016.12.077.

    CAS  Article  Google Scholar 

  154. Qu, X., Alvarez, P. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058.

    CAS  Article  Google Scholar 

  155. Rao, G., Lu, C., & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separation and Purification Technology, 58(1), 224–231. https://doi.org/10.1016/j.seppur.2006.12.006.

    CAS  Article  Google Scholar 

  156. Razzaz, A., Ghorban, S., Hosayni, L., Irani, M., & Aliabadi, M. (2016). Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers, 58, 333–343. https://doi.org/10.1016/j.jtice.2015.06.003.

    CAS  Article  Google Scholar 

  157. Rikame, S. S., Mungray, A. A., & Mungray, A. K. (2017). Synthesis, characterization and application of phosphorylated fullerene/sulfonated polyvinyl alcohol (PFSP) composite cation exchange membrane for copper removal. Separation and Purification Technology, 177, 29–39. https://doi.org/10.1016/j.seppur.2016.12.011.

    CAS  Article  Google Scholar 

  158. Rodríguez, A., Casals, E., Puntes, V., Komilis, D., Sánchez, J., & Segura, X. (2015). Use of cerium oxide (CeO2) nanoparticles for the adsorption of dissolved cadmium (II), lead (II) and chromium (VI) at two different pHs in single and multi-component systems. Global Nest, 17(3), 536–543.

    Article  Google Scholar 

  159. Rodriguez-Rodriguez, J., Ochando-Pulido, J. M., & Ferez, A. M.-. (2019). The effect of pH in tannery wastewater by Fenton vs. heterogeneous Fenton process. Chemical Engineering Transactions, 73. https://doi.org/10.3303/CET1973035.

  160. Sahu, S. C., & Hayes, A. W. (2017). Toxicity of nanomaterials found in human environment. Toxicology Research and Application, 1. https://doi.org/10.1177/2397847317726352.

  161. Sajid, M., Nazal, M., Ihsanullah, Baig, N., & Osman, A. (2018). Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review. Separation and Purification Technology, 191, 400–423.

    CAS  Article  Google Scholar 

  162. Sanghi, R., & Verma, P. (2013). Decolorisation of aqueous dye solutions by low-cost adsorbents: a review. Coloration Technology, 129(2), 85–108. https://doi.org/10.1111/cote.12019.

    CAS  Article  Google Scholar 

  163. Savage, N., & Diallo, M. S. (2005). Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research, 7(4–5), 331–342. https://doi.org/10.1007/s11051-005-7523-5.

    CAS  Article  Google Scholar 

  164. Seabra, A., & Durán, N. (2015). Nanotoxicology of metal oxide nanoparticles. Metals, 5(2), 934–975. https://doi.org/10.3390/met5020934.

    CAS  Article  Google Scholar 

  165. Semerjian, L., & Ayoub, G. M. (2003). High-pH–magnesium coagulation–flocculation in wastewater treatment. Advances in Environmental Research, 7, 389–403.

    CAS  Article  Google Scholar 

  166. Seyedi, S. M., Rabiee, H., Shahabadi, S. M. S., & Borghei, S. M. (2017). Synthesis of zero-valent iron nanoparticles via electrical wire explosion for efficient removal of heavy metals. CLEAN - Soil, Air, Water, 45(3). https://doi.org/10.1002/clen.201600139.

  167. Shahzad, A., Miran, W., Rasool, K., Nawaz, M., Jang, J., Lim, S.-R., et al. (2017). Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Advances, 7(16), 9764–9771. https://doi.org/10.1039/c6ra28406j.

    CAS  Article  Google Scholar 

  168. Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V., & Jayakumar, R. (2010). Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydrate Polymers, 80(2), 413–419. https://doi.org/10.1016/j.carbpol.2009.11.039.

    CAS  Article  Google Scholar 

  169. Shang, J., Zong, M., Yu, Y., Kong, X., Du, Q., & Liao, Q. (2017). Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar. Journal of Environmental Management, 197, 331–337. https://doi.org/10.1016/j.jenvman.2017.03.085.

    CAS  Article  Google Scholar 

  170. Sharahi, F., & Shahbazi, A. (2017). Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb (II) adsorbent for wastewater treatment: adsorption optimization by response surface methodology. Chemosphere, 180, 291–300.

    Article  Google Scholar 

  171. Sharma, Y. C., Srivastava, V., Singh, V. K., Kaul, S. N., & Weng, C. H. (2009). Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology, 30(6), 583–609. https://doi.org/10.1080/09593330902838080.

    CAS  Article  Google Scholar 

  172. Sharp, Z., & Atudorei, V. (2002). Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Taylor and Francis Health Sciences. https://doi.org/10.1080/0098410029007165.

  173. Shi, J., Yi, S., He, H., Long, C., & Li, A. (2013). Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and NO3−. Chemical Engineering Journal, 230, 166–171. https://doi.org/10.1016/j.cej.2013.06.088.

    CAS  Article  Google Scholar 

  174. Shukla, A. K., Alam, J., Alhoshan, M., Arockiasamy Dass, L., Ali, F. A. A., M. R, M., et al. (2018). Removal of heavy metal ions using a carboxylated graphene oxide-incorporated polyphenylsulfone nanofiltration membrane. Environmental Science: Water Research & Technology, 4(3), 438–448. https://doi.org/10.1039/c7ew00506g.

    CAS  Article  Google Scholar 

  175. Siahpoosh, Z., & Soleimani, M. (2017). Trace Cd (II), Pb (II) and Ni (II) ions extraction and preconcentration from different water samples by using Ghezeljeh montmorillonite nanoclay as a natural new adsorbent. Water Environment Nanotechnology, 2(1), 39–51.

    CAS  Google Scholar 

  176. Siciliano, A., & Limonti, C. (2018). Nanoscopic zero-valent iron supported on MgO for lead removal from waters. Water, 10(4). https://doi.org/10.3390/w10040404.

  177. Smith, S. C., & Rodrigues, D. F. (2015). Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon, 91, 122–143. https://doi.org/10.1016/j.carbon.2015.04.043.

    CAS  Article  Google Scholar 

  178. Sreeprasad, T. S., Maliyekkal, S. M., Lisha, K. P., & Pradeep, T. (2011). Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. Journal of Hazardous MaterialsJ Hazard Mater, 186(1), 921–931. https://doi.org/10.1016/j.jhazmat.2010.11.100.

    CAS  Article  Google Scholar 

  179. Stefaniuk, M., Oleszczuk, P., & Ok, Y. S. (2016). Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chemical Engineering Journal, 287, 618–632. https://doi.org/10.1016/j.cej.2015.11.046.

    CAS  Article  Google Scholar 

  180. Talebzadeh, F., Zandipak, R., & Sobhanardakani, S. (2016). CeO2 nanoparticles supported on CuFe2O4 nanofibers as novel adsorbent for removal of Pb (II), Ni (II), and V(V) ions from petrochemical wastewater. Desalination and Water Treatment, 57(58), 28363–28377. https://doi.org/10.1080/19443994.2016.1188733.

    CAS  Article  Google Scholar 

  181. Tambe Patil, B. B. (2015). Wastewater treatment using nanoparticles. Journal of Advanced Chemical Engineering, 5(3). https://doi.org/10.4172/2090-4568.1000131.

  182. Tang, S. C., & Lo, I. M. (2013). Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Research, 47(8), 2613–2632. https://doi.org/10.1016/j.watres.2013.02.039.

    CAS  Article  Google Scholar 

  183. Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liu, Y., Wang, X.-Y., Liu, Y.-Y., et al. (2012). Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chemical Engineering Journal, 211-212, 470–478. https://doi.org/10.1016/j.cej.2012.09.102.

    CAS  Article  Google Scholar 

  184. Tanhaei, B., Ayati, A., Bamoharram, F. F., & Sillanpää, M. (2017). Magnetic EDTA functionalized Preyssler cross linked chitosan nanocomposite for adsorptive removal of Pb (II) ions. CLEAN - Soil, Air, Water, 45(10). https://doi.org/10.1002/clen.201700328.

  185. The Royal Society (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society and The Royal Academy of Engineering.

  186. Vilardi, G., Stoller, M., Verdone, N., & Palma, L. D. (2017). Production of nano zero valent iron particles by means of a spinning disk reactor. Chemical Engineering Transactions, 57, 751–756. https://doi.org/10.3303/CET1757126.

    Article  Google Scholar 

  187. Vilardi, G., Di Palma, L., & Verdone, N. (2018a). On the critical use of zero valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater. Journal of Water Process Engineering, 22, 109–122. https://doi.org/10.1016/j.jwpe.2018.01.011.

    Article  Google Scholar 

  188. Vilardi, G., Mpouras, T., Dermatas, D., Verdone, N., Polydera, A., & Di Palma, L. (2018b). Nanomaterials application for heavy metals recovery from polluted water: the combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling. Chemosphere, 201, 716–729. https://doi.org/10.1016/j.chemosphere.2018.03.032.

    CAS  Article  Google Scholar 

  189. Vilardi, G., Ochando-Pulido, J. M., Stoller, M., Verdone, N., & Di Palma, L. (2018c). Fenton oxidation and chromium recovery from tannery wastewater by means of iron-based coated biomass as heterogeneous catalyst in fixed-bed columns. Chemical Engineering Journal, 351, 1–11. https://doi.org/10.1016/j.cej.2018.06.095.

    CAS  Article  Google Scholar 

  190. Vilardi, G., Rodríguez-Rodríguez, J., Ochando-Pulido, J. M., Verdone, N., Martinez-Ferez, A., & Di Palma, L. (2018d). Large laboratory-plant application for the treatment of a tannery wastewater by Fenton oxidation: Fe (II) and nZVI catalysts comparison and kinetic modelling. Process Safety and Environmental Protection, 117, 629–638. https://doi.org/10.1016/j.psep.2018.06.007.

    CAS  Article  Google Scholar 

  191. Vilardi, G., Di Palma, L., & Verdone, N. (2019). A physical-based interpretation of mechanism and kinetics of Cr (VI) reduction in aqueous solution by zero-valent iron nanoparticles. Chemosphere, 220, 590–599. https://doi.org/10.1016/j.chemosphere.2018.12.175.

    CAS  Article  Google Scholar 

  192. Vojoudi, H., Badiei, A., Bahar, S., Mohammadi Ziarani, G., Faridbod, F., & Ganjali, M. R. (2017). A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. Journal of Magnetism and Magnetic Materials, 441, 193–203. https://doi.org/10.1016/j.jmmm.2017.05.065.

    CAS  Article  Google Scholar 

  193. Vu, H. C., Dwivedi, A. D., Le, T. T., Seo, S.-H., Kim, E.-J., & Chang, Y.-S. (2017). Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr (VI) and As(V) from aqueous solutions: role of crosslinking metal cations in pH control. Chemical Engineering Journal, 307, 220–229. https://doi.org/10.1016/j.cej.2016.08.058.

    CAS  Article  Google Scholar 

  194. Vuković, G. D., Marinković, A. D., Škapin, S. D., Ristić, M. D., Aleksić, R., Perić-Grujić, A. A., Uskoković, P. S. (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chemical Engineering Journal 173(3), 855–865.

  195. Vunain, E., Mishra, A., & Mamba, B. (2016). Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy metal ions: a review. International Journal of Biological Macromolecules, 86, 570–586. https://doi.org/10.1016/j.ijbiomac.2016.02.005.

    CAS  Article  Google Scholar 

  196. Wang, J., & Zhuang, S. (2018). Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Critical Reviews in Environmental Science and Technology, 47(23), 2331–2386. https://doi.org/10.1080/10643389.2017.1421845.

    CAS  Article  Google Scholar 

  197. Wang, Z., Wu, Z., & Tang, S. (2009). Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 43(9), 2504–2512. https://doi.org/10.1016/j.watres.2009.02.026.

    CAS  Article  Google Scholar 

  198. Wang, C., Qiao, L., Zhang, Q., Yan, H., & Liu, K. (2012). Enhanced cell uptake of superparamagnetic iron oxide nanoparticles through direct chemisorption of FITC-Tat-PEG(6)(0)(0)-b-poly (glycerol monoacrylate). International Journal of Pharmaceutics, 430(1–2), 372–380. https://doi.org/10.1016/j.ijpharm.2012.04.035.

    CAS  Article  Google Scholar 

  199. Wang, B., He, X., Zhang, Z., Zhao, Y., & Feng, W. (2013). Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Accounts of Chemical Research, 46(3):761–769. https://doi.org/10.1021/ar2003336.

  200. Wang, L., Cheng, C., Tapas, S., Lei, J., Matsuoka, M., Zhang, J., et al. (2015). Carbon dots modified mesoporous organosilica as an adsorbent for the removal of 2,4-dichlorophenol and heavy metal ions. Journal of Materials Chemistry A, 3(25), 13357–13364. https://doi.org/10.1039/c5ta01652e.

    CAS  Article  Google Scholar 

  201. Wang, L., Hu, D., Kong, X., Liu, J., Li, X., Zhou, K., et al. (2018). Anionic polypeptide poly(γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd (II), Cu (II) and Ni (II) heavy metal ions. Chemical Engineering Journal, 346, 38–49. https://doi.org/10.1016/j.cej.2018.03.084.

    CAS  Article  Google Scholar 

  202. Wu, W., Wu, Z., Yu, T., Jiang, C., & Kim, W. S. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16(2), 023501. https://doi.org/10.1088/1468-6996/16/2/023501.

    CAS  Article  Google Scholar 

  203. Xia, Z., Baird, L., Zimmerman, N., & Yeager, M. (2017). Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers. Applied Surface Science, 416, 565–573. https://doi.org/10.1016/j.apsusc.2017.04.095.

    CAS  Article  Google Scholar 

  204. Xu, L., & Wang, J. (2017). The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Critical Reviews in Environmental Science and Technology, 47(12), 1042–1105. https://doi.org/10.1080/10643389.2017.1342514.

    CAS  Article  Google Scholar 

  205. Yahia Cherif, A., Arous, O., Mameri, N., Zhu, J., Ammi Said, A., Vankelecom, I., et al. (2018). Fabrication and characterization of novel antimicrobial thin film nano-composite membranes based on copper nanoparticles. Journal of Chemical Technology & Biotechnology. https://doi.org/10.1002/jctb.5631.

  206. Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., et al. (2019). Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials, 9(3). https://doi.org/10.3390/nano9030424.

  207. Yen, C., Lien, H., Chung, J., & Yeh, H. (2017). Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles. Journal of Hazardous Materials, 322, 215–222.

    CAS  Article  Google Scholar 

  208. Yuna, Z. (2016). Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Engineering Science. https://doi.org/10.1089/ees.2015.0166.

  209. Yunus, I. S., Harwin, Kurniawan, A., Adityawarman, D., & Indarto, A. (2012). Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, 1(1), 136–148. https://doi.org/10.1080/21622515.2012.733966.

    CAS  Article  Google Scholar 

  210. Yurekli, Y. (2016). Removal of heavy metals in wastewater by using zeolitenano-particles impregnated polysulfone membranes. Journal of Hazardous Materials, 309, 53–64.

    CAS  Article  Google Scholar 

  211. Zarei, A., Saedi, S., & Seidi, F. (2018). Synthesis and application of Fe3O4@SiO2@carboxyl-terminated PAMAM dendrimer nanocomposite for heavy metal removal. https://doi.org/10.1007/s10904-018-0948-y.

  212. Zarghami, Z., Akbari, A., Latifi, A., & Amani, M. (2016). Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics. Bioresource Technology, 205, 230–238.

    CAS  Article  Google Scholar 

  213. Zawrah, M. F., El Shereefy, E. S. E., & Khudir, A. Y. (2018). Reverse precipitation synthesis of ≤ 10 nm magnetite nanoparticles and their application for removal of heavy metals from water. Silicon. https://doi.org/10.1007/s12633-018-9841-0.

  214. Zhang, Y., Zhang, S., & Chung, T. S. (2015). Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environmental Science & Technology, 49(16), 10235–10242. https://doi.org/10.1021/acs.est.5b02086.

    CAS  Article  Google Scholar 

  215. Zhang, L., Luo, H., Liu, P., Fang, W., & Geng, J. (2016a). A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr (VI) in aqueous solutions. International Journal of Biological Macromolecules, 87, 586–596. https://doi.org/10.1016/j.ijbiomac.2016.03.027.

    CAS  Article  Google Scholar 

  216. Zhang, Y., Ye, Y., Liu, Z., Li, B., Liu, Q., Liu, Q., et al. (2016b). Monodispersed hierarchical aluminum/iron oxides composites micro/nanoflowers for efficient removal of As(V) and Cr (VI) ions from water. Journal of Alloys and Compounds, 662, 421–430. https://doi.org/10.1016/j.jallcom.2015.12.062.

    CAS  Article  Google Scholar 

  217. Zhang, Q., He, M., Chen, B., & Hu, B. (2018). Magnetic mesoporous carbons derived from in situ MgO template formation for fast removal of heavy metal ions. ACS Omega, 3(4), 3752–3759. https://doi.org/10.1021/acsomega.7b01989.

    CAS  Article  Google Scholar 

  218. Zhao, Y.-L., & Stoddart, F. (2009). Noncovalent functionalization of fingle-walled carbon nanotubes. Accounts of Chemical Research, 42(8), 1161–1171. https://doi.org/10.1021/ar900056zCCC:$71.50.

    CAS  Article  Google Scholar 

  219. Zhao, M., Xu, Y., Zhang, C., Rong, H., & Zeng, G. (2016). New trends in removing heavy metals from wastewater. Applied Microbiology and Biotechnology, 100(15), 6509–6518. https://doi.org/10.1007/s00253-016-7646-x.

    CAS  Article  Google Scholar 

  220. Zheng, Y., Yao, G., Cheng, Q., Yu, S., Liu, M., & Gao, C. (2013). Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination, 328, 42–50. https://doi.org/10.1016/j.desal.2013.08.009.

    CAS  Article  Google Scholar 

  221. Zhu, Q., & Li, Z. (2015). Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb 2+, Cu 2+, Cd 2+ and Ni 2+ removal from water. Chemical Engineering Journal, 281, 69–80. https://doi.org/10.1016/j.cej.2015.06.068.

    CAS  Article  Google Scholar 

  222. Zhu, S., Ho, S.-H., Huang, X., Wang, D., Yang, F., Wang, L., et al. (2017). Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustainable Chemistry & Engineering, 5(11), 9673–9682. https://doi.org/10.1021/acssuschemeng.7b00542.

    CAS  Article  Google Scholar 

  223. Zhu, N., Qiao, J., Ye, Y., & Yan, T. (2018). Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: adsorption mechanism study and application to a lab-scale column. Journal of Environmental Management, 211, 73–82. https://doi.org/10.1016/j.jenvman.2018.01.049.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to George M. Ayoub.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borji, H., Ayoub, G.M., Bilbeisi, R. et al. How Effective Are Nanomaterials for the Removal of Heavy Metals from Water and Wastewater?. Water Air Soil Pollut 231, 330 (2020). https://doi.org/10.1007/s11270-020-04681-0

Download citation

Keywords

  • Nanomaterial
  • Carbon-based nanomaterials
  • Dendrimers
  • Heavy metals
  • Metal oxides
  • Nanoclays
  • Nanofiltration membranes