Experimental Exposure of Lumbricus terrestris to Microplastics

Abstract

The effects of microplastic exposure in aquatic organisms have been widely reported. Nonetheless, there is limited evidence of the effects of exposure in soil systems. Thus, the objective of this study was to evaluate the effects of microplastic exposure using as a bioindicator the species Lumbricus terrestris, exposed to different concentrations of microplastic (2.5%; 5%, and 7% w/w). Avoidance bioassays were carried out for 48 h in soil with and without microplastic; the gastrointestinal tract—crop/gizzard, foregut, and midgut—was dissected and acetylcholinesterase (AChE) was used as a biomarker of neurotoxicity stress. In parallel, bioassays of microplastic ingestion were carried out, and after 48 h of initiating the ingestion assay, using a stereo and fluorescence microscope, the microplastic distribution was observed in the different earthworm segments. The results obtained in the avoidance assay indicated a lack of preference for either soil type; however, upon moving, the earthworms lost surface mucus, resulting in burns and lesions on their bodies, which were reflected in the increase in AChE enzyme levels, which was not directly related to microplastic ingestion, but rather likely acts as an external physical stress agent. The results of the ingestion bioassay showed that microplastic was present in all the earthworm segments, with a higher number of particles in the hindgut. The Lumbricus terrestris did not distinguish microplastics from soil particles, and given the high exposure concentrations, microplastics produced physical lesions on the mucus membranes of earthworms. Lumbricus terrestris showed to be a suitable bioindicator for testing the exposure to microplastic contamination in soil.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030.

    CAS  Article  Google Scholar 

  2. Araneda, A., Undurraga, P., López, D., Sáez, K., & Barra, R. (2016). Use of earthworms as a pesticide exposure indicator in soils under conventional and organic management. Chilean Journal of Agricultural Research, 76(3), 356–362. https://doi.org/10.4067/S0718-58392016000300014.

    Article  Google Scholar 

  3. Arthur, C., Baker, J., Bamford, H. (2009). Proceedings of the international research workshop on the occurence, effects, and fate of microplastic marine debris. Department of Commerce, National Oceanic and Atmospheric Administration (Technical Memorandum NOSOR& R-30).

  4. Biginagwa, F. J., Mayoma, B. S., Shashoua, Y., Syberg, K., & Khan, F. R. (2016). First evidence of microplastics in the African Great Lakes: recovery from Lake Victoria Nile perch and Nile tilapia. Journal of Great Lakes Research, 42(1), 146–149. https://doi.org/10.1016/j.jglr.2015.10.012.

    CAS  Article  Google Scholar 

  5. Boyle, J. F. (2002). Inorganic geochemical methods in palaeolimnology. In W. M. Last & J. P. Smol (Eds.), Tracking environmental change using lake sediments. Developments in Paleoenvironmental Research (Vol. 2). Dordrecht: Springer. https://doi.org/10.1007/0-306-47670-3_5.

    Google Scholar 

  6. Calisi, A., Lionetto, M. G., & Schettino, T. (2011). Biomarker response in the earthworm Lumbricus terrestris exposed to chemical pollutants. Science of the Total Environment, 409(20), 4456–4464. https://doi.org/10.1016/j.scitotenv.2011.06.058.

    CAS  Article  Google Scholar 

  7. Capowiez, Y., Dittbrenner, N., Rault, M., Triebskorn, R., Hedde, M., & Mazzia, C. (2010). Earthworm cast production as a new behavioural biomarker for toxicity testing. Environmental Pollution, 158, 388–393.

    CAS  Article  Google Scholar 

  8. Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025.

    CAS  Article  Google Scholar 

  9. Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á. T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M. L., & Duarte, C. M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 111(28), 10239–10244. https://doi.org/10.1073/pnas.1314705111.

    CAS  Article  Google Scholar 

  10. Cuevas, M. C., Ferrera, R., Roldán, A., & Rodríquez, R. (2008). Chapter 3: Ensayo de toxicidad aguda con la lombriz de tierra Eisenia andrei. In P. Ramírez & A. Mendoza (Eds.), Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo: La experiencia en México (pp. 211–223). Instituto Nacional de Ecología.

  11. De Silva, P. M. C. S., & Van Gestel, C. A. M. (2009). Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere., 77(11), 1609–1613. https://doi.org/10.1016/j.chemosphere.2009.09.034.

    CAS  Article  Google Scholar 

  12. Desforges, J. P., Galbraith, M., & Ross, P. S. (2015). Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology, 69(3), 320–330. https://doi.org/10.1007/s00244-015-0172-5.

    CAS  Article  Google Scholar 

  13. Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    CAS  Article  Google Scholar 

  14. Endo, S., Takizawa, R., Okuda, K., Takada, H., Chiba, K., Kanehiro, H., Ogi, H., Yamashita, R., & Date, T. (2005). Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Marine Pollution Bulletin, 50(10), 1103–1114. https://doi.org/10.1016/j.marpolbul.2005.04.030.

    CAS  Article  Google Scholar 

  15. Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025.

    CAS  Article  Google Scholar 

  16. Galgani, F., Leaute, J. P., Moguedet, P., Souplet, A., Verin, Y., Carpentier, A., Goraguer, H., Latrouite, D., Andral, B., Cadiou, Y., Mahe, J. C., Poulard, J. C., & Nerisson, P. (2000). Litter on the sea floor along European coasts. Marine Pollution Bulletin, 40(6), 516–527. https://doi.org/10.1016/S0025-326X(99)00234-9.

    CAS  Article  Google Scholar 

  17. Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the Biuret reaction. The Journal of Biological Chemistry, 177, 751–766.

    CAS  Google Scholar 

  18. Hallam, J., & Hodson, M. E. (2020). Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-020-01432-5.

  19. Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T., & Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8), 4714–4721. https://doi.org/10.1021/acs.est.7b00635.

    CAS  Article  Google Scholar 

  20. Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Van, d. P. M., Besseling, E., Koelmans, A. A., & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685–2691. https://doi.org/10.1021/acs.est.5b05478.

    CAS  Article  Google Scholar 

  21. Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Ploeg, M. V. D., Besseling, E., Koelmans, A. A., & Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220(PartA), 523–531. https://doi.org/10.1016/j.envpol.2016.09.096.

    CAS  Article  Google Scholar 

  22. International Organization for Standardization (1993). Soil quality -effects of pollutants on earthworms (Eisenia fetida). Part 1: Determination of acute toxicity using artificial soil substrate. No.11268–1. Geneva.

  23. International Organization for Standardization (1998). Soil quality -effects of pollutants on earthworms (Eisenia fetida). Part 2: Determination of effects on reproduction. No. 11268–2. Geneva.

  24. International Organization for Standardization (2008). Soil quality— avoidance tests for determining the quality of soils and effects of chemicals on behaviour — part 1: test with earthworms (Eisenia fetida and Eisenia andrei). N°17512-1. Geneva, Switzerland.

  25. Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science., 347(6223), 768–771. https://doi.org/10.1126/science.1260352.

    CAS  Article  Google Scholar 

  26. Kedzierski, M., Le Tilly, V., Bourseau, P., Bellegou, H., César, G., Sire, O., & Bruzaud, S. (2016). Microplastics elutriation from sandy sediments: a granulometric approach. Marine Pollution Bulletin, 107(1), 315–323. https://doi.org/10.1016/j.marpolbul.2016.03.041.

    CAS  Article  Google Scholar 

  27. Kokalj, A. J., Horvat, P., Skalar, T., & Kržan, A. (2018). Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods. Sci. Total Environ., 615, 761–766. https://doi.org/10.1016/j.scitotenv.2017.10.020.

    CAS  Article  Google Scholar 

  28. Law, K. L., & Thompson, R. C. (2014). Microplastics in the seas. Science., 345(6193), 144–145. https://doi.org/10.1126/science.1254065.

    CAS  Article  Google Scholar 

  29. Lee, J., Hong, S., Song, Y. K., Hong, S. H., Jang, Y. C., Jang, M., Heo, N. W., Han, G. M., Lee, M. J., Kang, D., & Shim, W. J. (2013). Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine Pollution Bulletin, 77(1–2), 349–354. https://doi.org/10.1016/j.marpolbul.2013.08.013.

    CAS  Article  Google Scholar 

  30. NCh 1515 Of. (1979). Mecánica de suelos – Determinación de la humedad. Santiago: Instituto Nacional de Normalización.

    Google Scholar 

  31. Perreault, J. M., & Whalen, J. K. (2006). Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture. Pedobiologia, 50, 397–403.

    Article  Google Scholar 

  32. Prendergast-Miller, M. T., Katsiamides, A., Abbass, M., Sturzenbaum, S. R., Thorpe, K. L., & Hodson, M. E. (2019). Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris. Environmental Pollution, 251, 453–459. https://doi.org/10.1016/j.envpol.2019.05.037.

    CAS  Article  Google Scholar 

  33. Qiang, L. Y., & Cheng, J. P. (2019). Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 176, 226–233. https://doi.org/10.1016/j.ecoenv.2019.03.088.

    CAS  Article  Google Scholar 

  34. Qiu, Q. X., Peng, J. P., Yu, X. B., Chen, F. C. Z., Wang, J. D., & Dong, F. Q. (2015). Occurrence of microplastics in the coastal marine environment: first observation on sediment of China. Marine Pollution Bulletin, 98(1–2), 274–280. https://doi.org/10.1016/j.marpolbul.2015.07.028.

    CAS  Article  Google Scholar 

  35. Rault, M., Mazzia, C., & Capowiez, Y. (2007). Tissue distribution and characterization of cholinesterase activity in six earthworm species. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 147(2), 340–346. https://doi.org/10.1016/j.cbpb.2007.01.022.

    CAS  Article  Google Scholar 

  36. Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouche. Environmental Pollution, 220(PartA), 495–503. https://doi.org/10.1016/j.envpol.2016.09.092.

    CAS  Article  Google Scholar 

  37. Song, Y., Cao, C. J., Qiu, R., Hu, J. N., Liu, M. T., Lu, S. B., Shi, H. H., Raley-Susman, K. M., Kathleen, M., & He, D. F. (2019). Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environmental Pollution, 250, 447–455. https://doi.org/10.1016/j.envpol.2019.04.066.

    CAS  Article  Google Scholar 

  38. Teuten, E. L., Rowland, S. J., & Galloway, T. S. (2007). Potential for plastics to transport hydrophobic contaminants. Environmental Science & Technology, 41(22), 7759–7764. https://doi.org/10.1021/es071737s.

    CAS  Article  Google Scholar 

  39. Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Bjorn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., & Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2027–2045. https://doi.org/10.1098/rstb.2008.0284.

    CAS  Article  Google Scholar 

  40. Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., & Janssen, C. R. (2015). Microplastics in sediments: a review of techniques, occurrence and effects. Marine Environmental Research, 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007.

    CAS  Article  Google Scholar 

  41. Wesch, C., Barthel, A. K., Braun, U., Klein, R., & Paulus, M. (2016). No microplastics in benthic eelpout (Zoarces viviparus): an urgent need for spectroscopic analyses in microplastic detection. Environmental Research, 148, 36–38. https://doi.org/10.1016/j.envres.2016.03.017.

    CAS  Article  Google Scholar 

  42. Wheelock, C. E., Eder, K. J., Werner, I., Huang, H., Jones, P. D., Brammell, B. F., Elskus, A. A., & Hammock, B. D. (2005). Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquatic Toxicology, 74(2), 172–192. https://doi.org/10.1016/j.aquatox.2005.05.009.

    CAS  Article  Google Scholar 

  43. Wurl, O., & Obbard, J. P. (2004). A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Marine Pollution Bulletin, 48(11–12), 1016–1030. https://doi.org/10.1016/j.marpolbul.2004.03.016.

    CAS  Article  Google Scholar 

  44. Young, A. M., & Elliott, J. A. (2016). Characterization of microplastic and mesoplastic debris in sediments from Kamilo Beach and Kahuku Beach, Hawai’i. Marine Pollution Bulletin, 113(1–2), 477–482. https://doi.org/10.1016/j.marpolbul.2016.11.009.

    CAS  Article  Google Scholar 

  45. Zhao, S. Y., Zhu, L. X., Wang, T., & Li, D. J. (2014). Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Marine Pollution Bulletin, 86(1–2), 562–568. https://doi.org/10.1016/j.marpolbul.2014.06.032.

    CAS  Article  Google Scholar 

Download references

Funding

This research was supported by CRHIAM/ANID/FONDAP 15130015 and by FONDECYT 1180063 granted to Ricardo Barra.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carolina Baeza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baeza, C., Cifuentes, C., González, P. et al. Experimental Exposure of Lumbricus terrestris to Microplastics. Water Air Soil Pollut 231, 308 (2020). https://doi.org/10.1007/s11270-020-04673-0

Download citation

Keywords

  • Microplastic
  • Terrestrial ecosystem
  • Lumbricus terrestris
  • Acetylcholinesterase (AChE)