Surface Modified Laterite Soil with an Anionic Surfactant for the Removal of a Cationic Dye (Crystal Violet) from an Aqueous Solution

Abstract

The work aims to study the removal of crystal violet (CV) using laterite soil with surface modification by surfactant (SML). Surface modification of laterite soil was conducted by pre-adsorption of sodium dodecyl sulfate (SDS) at pH 4 and low ionic strength to enhance removal of CV. The effective conditions for CV removal through adsorption technique using SML were optimized and found to be contact time 60 min, pH 6, adsorbent dosage 5 mg/mL, and 5 mM NaCl as background electrolyte. The highest removal of CV using SML reached to 86.5% under optimum conditions. We used Fourier transform infrared spectroscopy (FT-IR) to evaluate the change of surface vibrational groups of laterite after SDS pre-adsorption and after CV adsorption while the different charged surface was determined by ζ potential measurements. The CV adsorption onto SML increased when increasing ionic strength from 1 to 10 mM. Nevertheless, at high ionic strength, this trend is reversal due to desorption of SDS from laterite surfaces. Adsorption isotherms of CV onto SML at different NaCl concentrations were tried to fit by Langmuir, Freundlich, and a two-step adsorption models. The adsorption kinetics were in good agreement with pseudo-second-order model. The removal efficiency of CV after four regenerations still reached higher than 85%. On the basis of adsorption isotherms, charged surface change by ζ potential and surface modification by FT-IR, we suggest that CV adsorption onto SML was induced by both non-electrostatic and electrostatic interactions. We also demonstrate that SML is a novel, reusable, and low-cost adsorbent for cationic dye removal from aqueous solution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Adak, A., Bandyopadhyay, M., & Pal, A. (2005). Removal of crystal violet dye from wastewater by surfactant-modified alumina. Separation and Purification Technology, 44, 139–144. https://doi.org/10.1016/j.seppur.2005.01.002.

    CAS  Article  Google Scholar 

  2. Adak, A., Pal, A., & Bandyopadhyay, M. (2006a). Removal of phenol from water environment by surfactant-modified alumina through adsolubilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 277, 63.

    CAS  Article  Google Scholar 

  3. Adak, A., Bandyopadhyay, M., & Pal, A. (2006b). Fixed bed column study for the removal of crystal violet (C. I. Basic violet 3) dye from aquatic environment by surfactant-modified alumina. Dyes and Pigments, 69, 245–251. https://doi.org/10.1016/j.dyepig.2005.03.009.

    CAS  Article  Google Scholar 

  4. Almeida, M. R., Stephani, R., dos Santos, H. I. F., & Oliveira, L. F. C. D. (2009). Spectroscopic and theoretical study of the “Azo”-Dye E124 in condensate phase: evidence of a dominant hydrazo form. The Journal of Physical Chemistry A, 114, 526–534. https://doi.org/10.1021/jp907473d.

    CAS  Article  Google Scholar 

  5. Al-Momani, F., Touraud, E., Degorce-Dumas, J. R., Roussy, J., & Thomas, O. (2002). Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis. Journal of Photochemistry and Photobiology A: Chemistry, 153, 191–197. https://doi.org/10.1016/S1010-6030(02)00298-8.

    CAS  Article  Google Scholar 

  6. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73, 373–380. https://doi.org/10.1021/ja01145a126.

    CAS  Article  Google Scholar 

  7. Chao, H.-P., Lee, C.-K., Juang, L.-C., & Han, Y.-L. (2013). Sorption of organic compounds, oxyanions, and heavy metal ions on surfactant modified titanate nanotubes. Industrial & Engineering Chemistry Research, 52, 9843–9850. https://doi.org/10.1021/ie4010699.

    CAS  Article  Google Scholar 

  8. Chu, T. P. M., et al. (2019). Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal. Materials, 12, 450.

    CAS  Article  Google Scholar 

  9. Cuiping B, Xianfeng X, Wenqi G, Dexin F, Mo X, Zhongxue G, Nian X (2011) Removal of rhodamine B by ozone-based advanced oxidation process Desalination 278:84–90 doi:https://doi.org/10.1016/j.desal.2011.05.009.

  10. Das, A. K., Saha, S., Pal, A., & Maji, S. K. (2009). Surfactant-modified alumina: an efficient adsorbent for malachite green removal from water environment. Journal of Environmental Science and Health, Part A, 44, 896.

    CAS  Article  Google Scholar 

  11. Delgado, A. V., González-Caballero, F., Hunter, R. J., Koopal, L. K., & Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 309, 194–224.

    CAS  Article  Google Scholar 

  12. Doğan, M., Alkan, M., Türkyilmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, 109, 141–148. https://doi.org/10.1016/j.jhazmat.2004.03.003.

    CAS  Article  Google Scholar 

  13. Freundlich, H. M. F. (1906). Über die adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57A, 385.

    Google Scholar 

  14. Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal – a review. Journal of Environmental Management, 90, 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017.

    CAS  Article  Google Scholar 

  15. Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: growing approach to wastewater treatment—a review critical reviews. Environmental Science and Technology, 39, 783–842. https://doi.org/10.1080/10643380801977610.

    Article  Google Scholar 

  16. Hameed, B. H., & El-Khaiary, M. I. (2008). Removal of basic dye from aqueous medium using a novel agricultural waste material: Pumpkin seed hull. Journal of Hazardous Materials, 155, 601–609. https://doi.org/10.1016/j.jhazmat.2007.11.102.

    CAS  Article  Google Scholar 

  17. Hind, A. R., Bhargava, S. K., & McKinnon, A. (2001). At the solid/liquid interface: FTIR/ATR—the tool of choice. Advances in Colloid and Interface Science, 93, 91–114.

    CAS  Article  Google Scholar 

  18. Huang, J.-H., Huang, K.-L., Liu, S.-Q., Wang, A. T., & Yan, C. (2008). Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330, 55–61. https://doi.org/10.1016/j.colsurfa.2008.07.050.

    CAS  Article  Google Scholar 

  19. Huang, Y., Yamaguchi, A., Pham, T. D., & Kobayashi, M. (2018). Charging and aggregation behavior of silica particles in the presence of lysozymes. Colloid and Polymer Science, 296, 145–155. https://doi.org/10.1007/s00396-017-4226-2.

    CAS  Article  Google Scholar 

  20. Ishiguro, M., & Koopal, L. K. (2016). Surfactant adsorption to soil components and soils. Advances in Colloid and Interface Science, 231, 59–102. https://doi.org/10.1016/j.cis.2016.01.006.

    CAS  Article  Google Scholar 

  21. Kang, S.-F., Liao, C.-H., & Po, S.-T. (2000). Decolorization of textile wastewater by photo-fenton oxidation technology. Chemosphere, 41, 1287–1294. https://doi.org/10.1016/S0045-6535(99)00524-X.

    CAS  Article  Google Scholar 

  22. Khan, T. A., Dahiya, S., & Ali, I. (2012). Use of kaolinite as adsorbent: equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Applied Clay Science, 69, 58–66. https://doi.org/10.1016/j.clay.2012.09.001.

    CAS  Article  Google Scholar 

  23. Kobayashi, M. (2008). Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid and Polymer Science, 286, 935–940. https://doi.org/10.1007/s00396-008-1851-9.

    CAS  Article  Google Scholar 

  24. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403. https://doi.org/10.1021/ja02242a004.

    CAS  Article  Google Scholar 

  25. Ledakowicz, S., Solecka, M., & Zylla, R. (2001). Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89, 175–184. https://doi.org/10.1016/S0168-1656(01)00296-6.

    CAS  Article  Google Scholar 

  26. Lin, M.-C., & Lin, K.-C. (2012). Interaction between crystal violet and anionic surfactants at silica/water interface using evanescent wave-cavity ring-down absorption spectroscopy. Journal of Colloid and Interface Science, 379, 41–47. https://doi.org/10.1016/j.jcis.2012.04.041.

    CAS  Article  Google Scholar 

  27. Maiti, A., Sharma, H., Basu, J. K., & De, S. (2009). Modeling of arsenic adsorption kinetics of synthetic and contaminated groundwater on natural laterite. Journal of Hazardous Materials, 172, 928–934. https://doi.org/10.1016/j.jhazmat.2009.07.140.

    CAS  Article  Google Scholar 

  28. Maiti, A., Basu, J. K., & De, S. (2010). Development of a treated laterite for arsenic adsorption: effects of treatment parameters. Industrial & Engineering Chemistry Research, 49, 4873–4886. https://doi.org/10.1021/ie100612u.

    CAS  Article  Google Scholar 

  29. Maiti, A., Basu, J. K., & De, S. (2012). Experimental and kinetic modeling of As(V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: effects of phosphate, silicate and carbonate ions. Chemical Engineering Journal, 191, 1–12. https://doi.org/10.1016/j.cej.2010.01.031.

    CAS  Article  Google Scholar 

  30. Maji, S. K., Pal, A., Pal, T., & Adak, A. (2007). Adsorption thermodynamics of arsenic on laterite soil. Journal of Surface Science and Technology, 22, 161.

    Google Scholar 

  31. Marchand, C., Allenbach, M., & Lallier-Vergès, E. (2011). Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma, 160, 444–456. https://doi.org/10.1016/j.geoderma.2010.10.015.

    CAS  Article  Google Scholar 

  32. Namasivayam, C., Radhika, R., & Suba, S. (2001). Uptake of dyes by a promising locally available agricultural solid waste: coir pith. Waste Management, 21, 381–387. https://doi.org/10.1016/S0956-053X(00)00081-7.

    CAS  Article  Google Scholar 

  33. Nguyen, T. M. T., et al. (2018). Adsorption of anionic surfactants onto alumina: characteristics, mechanisms, and application for heavy metal removal. International Journal of Polymer Science, 2018, 11. https://doi.org/10.1155/2018/2830286.

    CAS  Article  Google Scholar 

  34. Pal, M. U. K. A. (2014). Investigation on the adsorption of Mn(II) on surfactant-modified alumina: Batch and column studies. Journal of Environmental Chemical Engineering, 2, 2295.

    Article  Google Scholar 

  35. Pal, A., Pan, S., & Saha, S. (2013). Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads. Chemical Engineering Journal, 217, 426.

    CAS  Article  Google Scholar 

  36. Papić, S., Koprivanac, N., Lončarić Božić, A., & Meteš, A. (2004). Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process. Dyes and Pigments, 62, 291–298. https://doi.org/10.1016/S0143-7208(03)00148-7.

    CAS  Article  Google Scholar 

  37. Pham, T. D., Kobayashi, M., & Adachi, Y. (2015a). Adsorption characteristics of anionic azo dye onto large α-alumina beads. Colloid and Polymer Science, 293, 1877–1886. https://doi.org/10.1007/s00396-015-3576-x.

    CAS  Article  Google Scholar 

  38. Pham, T. D., Kobayashi, M., & Adachi, Y. (2015b). Adsorption of anionic surfactant sodium dodecyl sulfate onto alpha alumina with small surface area. Colloid and Polymer Science, 293, 217–227. https://doi.org/10.1007/s00396-014-3409-3.

    CAS  Article  Google Scholar 

  39. Pham, T. D., et al. (2017a). Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina. Environmental Chemistry, 14, 327–337. https://doi.org/10.1071/EN17102.

    CAS  Article  Google Scholar 

  40. Pham, T. D., et al. (2017b). Adsorptive removal of copper by using surfactant modified laterite soil. Journal of Chemistry, 2017, 10. https://doi.org/10.1155/2017/1986071.

    CAS  Article  Google Scholar 

  41. Pham, T. D., et al. (2018). Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: characteristics, mechanisms, and application for antibiotic removal. Polymers, 10, 220.

    Article  Google Scholar 

  42. Pham, T. D., et al. (2019a). Adsorption of poly(styrenesulfonate) onto different-sized alumina particles: characteristics and mechanisms. Colloid and Polymer Science, 297, 13–22. https://doi.org/10.1007/s00396-018-4433-5.

    CAS  Article  Google Scholar 

  43. Pham, T. D., Tran, T. T., Le, V. A., Pham, T. T., Dao, T. H., & Le, T. S. (2019b). Adsorption characteristics of molecular oxytetracycline onto alumina particles: the role of surface modification with an anionic surfactant. Journal of Molecular Liquids, 287, 110900. https://doi.org/10.1016/j.molliq.2019.110900.

    CAS  Article  Google Scholar 

  44. Pham, T. D., Pham, T. T., Phan, M. N., Ngo, T. M. V., Dang, V. D., & Vu, C. M. (2020). Adsorption characteristics of anionic surfactant onto laterite soil with differently charged surfaces and application for cationic dye removal. Journal of Molecular Liquids, 301, 112456. https://doi.org/10.1016/j.molliq.2020.112456.

    CAS  Article  Google Scholar 

  45. Sarkar, M., Banerjee, A., Pramanick, P. P., & Sarkar, A. R. (2006). Use of laterite for the removal of fluoride from contaminated drinking water. Journal of Colloid and Interface Science, 302, 432–441. https://doi.org/10.1016/j.jcis.2006.07.001.

    CAS  Article  Google Scholar 

  46. Schoonen, M. A., & Schoonen, J. M. T. (2014). Removal of crystal violet from aqueous solutions using coal. Journal of Colloid and Interface Science, 422, 1–8. https://doi.org/10.1016/j.jcis.2014.02.008.

    CAS  Article  Google Scholar 

  47. Shemer, H., Kunukcu, Y. K., & Linden, K. G. (2006). Degradation of the pharmaceutical Metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere, 63, 269–276. https://doi.org/10.1016/j.chemosphere.2005.07.029.

    CAS  Article  Google Scholar 

  48. Sureshkumar, M. V., & Namasivayam, C. (2008). Adsorption behavior of direct red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 277–283. https://doi.org/10.1016/j.colsurfa.2007.10.026.

    CAS  Article  Google Scholar 

  49. Tran, N. H., Reinhard, M., & Gin, K. Y.-H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182–207. https://doi.org/10.1016/j.watres.2017.12.029.

    CAS  Article  Google Scholar 

  50. Wang, S., & Wang, H. (2015). Adsorption behavior of antibiotic in soil environment: a critical review. Frontiers of Environmental Science & Engineering, 9, 565–574. https://doi.org/10.1007/s11783-015-0801-2.

    CAS  Article  Google Scholar 

  51. Zhao, B., Shang, Y., Xiao, W., Dou, C., & Han, R. (2014). Adsorption of Congo red from solution using cationic surfactant modified wheat straw in column model. Journal of Environmental Chemical Engineering, 2, 40–45. https://doi.org/10.1016/j.jece.2013.11.025.

    CAS  Article  Google Scholar 

  52. Zhu, B.-Y., & Gu, T. (1991). Surfactant adsorption at solid-liquid interfaces. Advances in Colloid and Interface Science, 37, 1–32. https://doi.org/10.1016/0001-8686(91)80037-K.

    CAS  Article  Google Scholar 

Download references

Funding

This research is funded by the Thai Nguyen University of Education (TNUE) under project number CS-2019-01.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Thi Mai Viet Ngo or Tien Duc Pham.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ngo, T.M.V., Truong, T.H., Nguyen, T.H.L. et al. Surface Modified Laterite Soil with an Anionic Surfactant for the Removal of a Cationic Dye (Crystal Violet) from an Aqueous Solution. Water Air Soil Pollut 231, 285 (2020). https://doi.org/10.1007/s11270-020-04647-2

Download citation

Keywords

  • Crystal violet
  • Adsorption isotherm
  • Laterite
  • Surface modification
  • Sodium dodecyl sulfate (SDS)
  • Two-step model