Identification of Pesticide Residues and Prediction of Their Fate in Agricultural Soil


Fourteen pesticides were screened and determined through quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction process combined with GC-MS/MS in arid agriculture soil. The aims of the current investigation were to account the occurrence of organochlorine (OCP) and organophosphates (OPP) pesticide residues as well as other groups of pyrethroids (PYRs), carbamates, and biopesticides using a combined of QuEChERS and GC-MS/MS techniques in agriculture soils at Al-Kharj region, Saudi Arabia, and to investigate correlation between pesticide losses in soils and some physicochemical characteristics of pesticides including an octanol-water coefficient partition (Kow) and the vapor pressure (Vp). Prediction of pesticide fate by considering both pesticide and soil physio-chemical properties will facilitate the management of pesticide application and minimize the hazards of environmental pollution. The fate of pesticide residue in soils is generally controlled by soil/air exchange, water interaction, and biodegradation. The results indicated that 14 pesticide residues were measured in collected samples of various soils, spinosad, chlorpyrifos methyl, dimethoate, chlorpyrifos, lindane (γ-HCH), permethrin, and methomyl which were the most abundant sources of contamination in the studied region. p,p-DDT, o,p-DDT, bifenthion, β-cyfluthrin, and methidathion were less commonly detected. Single parameter least squares regression equations (sp-LSRE) for Vp and Kow against the loss of each pesticide residue showed a significant change in concentration levels (p < 0.05) between the two seasons. The results showed that vapor pressure and octanol-water partition coefficient data are not enough to model pesticide residue losses in arid low organic carbon soil. More soil-related data is needed to describe the dissipation mechanisms of these pesticide residues in the region.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Ahmed, R., Kookana, R. S., Alston, A. M., & Skjemstad, J. O. (2001). The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy. Environmental Science & Technology, 35, 878–884.

    Article  Google Scholar 

  2. Alabdula’aly, A. I., Al-Rehaili, A. M., Al-Zarah, A. I., & Khan, M. A. (2010). Assessment of nitrate concentration in groundwater in Saudi Arabia. Environmental Monitoring and Assessment, 161, 1–9.

    Article  Google Scholar 

  3. Al-Harbi, K. M. (2010). Monitoring of agricultural area trend in Tabuk region –Saudi Arabia using Landsat TM and SPOT data. The Egyptian Journal of Remote Sensing and Space Sciences, 13, 37–42.

    Article  Google Scholar 

  4. Al-Saleh, I., Al-Doush, I., & Echeverria-Quevedo, A. (1999). Residues of pesticides in grains locally grown in Saudi Arabia. Bulletin of Environmental Contamination and Toxicology, 63, 451–459.

    CAS  Article  Google Scholar 

  5. Al-Saleh, I., Echeverria-Quevedo, A., Al-Dgaither, S., & Faris, R. (1998). Residue levels of organochlorinated insecticides in breast milk: a preliminary report from Al-Kharj, Saudi Arabia. Journal of Environmental Pathology, Toxicology and Oncology, 17, 37–50.

    CAS  Google Scholar 

  6. Al-Saleh, I., El Din, M. G., Al-Doush, I., Alsabbaheen, A., & Rabbah, A. (2012). Levels of DDT and its metabolites in placenta, maternal and cord blood and their potential influence on neonatal anthropometric measures. The Science of the Total Environment, 416, 62–74.

    CAS  Article  Google Scholar 

  7. Al-Wabel, M. I., El-Saeid, M. H., Al-Turki, A. M., & Abdel-Nasser, G. (2011). Monitoring of pesticide residues in Saudi Arabian agricultural soils. Research Journal of Environmental Sciences, 5, 269–278.

    CAS  Article  Google Scholar 

  8. Batarseh, M., & Rakan, T. (2013). Multiresidue analysis of pesticides in agriculture soil from Jordan Valley. Jordan Journal of Chemistry, 8(3), 152–168.

    CAS  Article  Google Scholar 

  9. Benedicta, Y. F.-M., Okoffo, E. D., Darko, G., & Gordon, C. (2016, 2016). Organophosphorus pesticide residues in soils and drinking water sources from cocoa producing areas in Ghana. Environmental System Research, 5, –10.

  10. Burkhard, N., & Guth, J. A. (1981). Rate of volatilisation of pesticides from soil surfaces: comparison of calculated results with those determined in a laboratory model system. Pesticide Science, 12, 37–44.

    CAS  Article  Google Scholar 

  11. El-Saeid, M. H., Al-Turki, A. M., Al-Wabel, M. I., & Abdel-Nasser, G. (2011). Evaluation of pesticide residues in Saudi Arabian groundwater. Research Journal of Environmental Sciences, 5, 171–178.

    CAS  Article  Google Scholar 

  12. EL-Saeid, M.H., Majjami, A.Y., Modaihsh A.S., Al-Barakah N.I., Fahad, G., Adel and Bazeyad, A. (2019). Impact of QuEChERS and GC-MS/MSTQD as multiresidues techniques for determination of 74 pesticides in olive farm soil. International Research Journal of Pure & Applied Chemistry, 17(4): 1–11, 2018; Article no. IRJPAC.46264 ISSN: 2231–3443, NLM ID: 10164766.

  13. Ghafoor, A., Jarvis, N. J., Thierfelder, T., & Stenström, J. (2011). Measurements and modeling of pesticide persistence in soil at the catchment scale. Science of the Total Environment, 409, 1900–1908.

    CAS  Article  Google Scholar 

  14. Gonzalez, M., Miglioranza, K. S. B., Aizpún, J. E., Isla, F. I., & Peña, A. (2010). Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere., 81, 351–358.

    CAS  Article  Google Scholar 

  15. Goss, K. U., & Schwarzenbach, R. P. (2001). Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environmental Science & Technology, 35, 1–9.

    CAS  Article  Google Scholar 

  16. Guth, J. A., Reischmann, F. J., Allen, R., Arnold, D., Hassink, J., Leake, C. R., Skidmore, M. W., & Reeves, G. L. (2004). Volatilisation of crop protection chemicals from crop and soil surfaces under controlled conditions—prediction of volatile losses from physicochemical properties. Chemosphere, 57, 871–887.

    CAS  Article  Google Scholar 

  17. Hussen, A., Negussie, M., & Jan Ake, J. (2017). Effect of aging organochlorine pesticides in various soil types on their extractability using selective pressurized liquid extraction. Journal of Environmental Protection, 8, 867–883

    CAS  Article  Google Scholar 

  18. Bai, J., Lu, Q., Zhao, Q., Wang, J., Gao, Z., & Zhang, G. (2015). Organochlorine pesticides (OCPs) in wetland soils under different land uses along a 100-year chronosequence of reclamation in a Chinese estuary. Scientific Reports, 5, 17624.

    CAS  Article  Google Scholar 

  19. Kodeˇsovaa, R., Koˇcareka, M., Kodeš, B. V., Drabeka, O., Kozaka, J., & Hejtmankovac, K. (2011). Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials, 186, 540–550.

    Article  Google Scholar 

  20. Luo, Y., Yang, R., Li, Y., Wang, P., Zhu, Y., Yuan, G., Zhang, Q., & Jiang, G. (2019). Accumulation and fate processes of organochlorine pesticides (OCPs) in soil profiles in Mt. Shergyla, Tibetan Plateau: a comparison on different forest types. Chemosphere., 231, 571–578.

    CAS  Article  Google Scholar 

  21. Mackay, D., Shui, W. Y., & Ma, K. C. (1997). Illustrated Handbook of Physical-Chemical Properties and Environmental Fate of Organic chemicals (pp. 351–374). Boca Raton: Lewis Publishers.

    Google Scholar 

  22. Osman, K. A., Al-Humaid, A. I., Al-Rehiayani, A. I., & Al-Redhaiman, K. N. (2010). Monitoring of pesticide residues in vegetables marketed in Al-Qassim region, Saudi Arabia. Ecotoxicology and Environmental Safety, 73, 1433–1439.

    CAS  Article  Google Scholar 

  23. Reichman, R., Mehrer, Y. A., &; Wallach, R. A. (2000a). Combined soil-atmosphere model for evaluating the fate of surface-applied pesticides. 2. The effect of varying environ- mental conditions. Environmental Science & Technology, 34, 1321–1330.

  24. Reichman, R., Wallach, R., & Mehrer, Y. A. (2000b). Combined soil-atmosphere model for evaluating the fate of surface- applied pesticides. 1. Model development and verification. Environmental Science & Technology, 34, 1313–1320.

  25. Sara Andrea Vaca Sanchez, Axel Mentler, Michael Gartner, Andreas Gschaider, Joep van der Poel, Rosana Maria Kral, Asih Ngadisih, and Katharina Maria Keiblinger (2019). Pesticide residues in intensive agricultural soils are higher than inagroforestry systems – a case study on the Indonesian Dieng plateau. Geophysical Research Abstracts Vol. 21, EGU2019–12351

  26. Scholtz, M. T., & Bidleman, T. F. (2007). Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II.Projected long-term fate of pesticide residues. The Science of the Total Environment, 377, 61–80.

    CAS  Article  Google Scholar 

  27. Sheta, A. S., AI-Sewailem, M. S., Sallam, A. S., & Al-Mashhady, A. S. (2000). Nature and composition of newly formed precipitates in relationship to characteristics of groundwater in arid environment. Arid Soil Research and Rehabilitation, 14, 387–401.

    CAS  Article  Google Scholar 

  28. Ssebugere, P., Wasswa, J., Mbabazi, J., Nyanzi, S. A., Kiremire, B. T., & Marco, J. A. M. (2010). Organochlorine pesticides in soils from South-Western Uganda. Chemosphere., 78, 1250–1255.

    CAS  Article  Google Scholar 

  29. Wang, X., Wang, D., Qin, X., & Xu, X. (2008). Residues of organochlorine pesticides in surface soils from college school yards in Beijing. Chinese Journal of Environmental Science, 20, 1090–1096.

    CAS  Article  Google Scholar 

  30. Wesenbeeck, I. V., Driver, J., & Ross, J. (2008). Relationship between the evaporation rate and vapor pressure of moderately and highly volatile chemicals. Bulletin of Environmental Contamination and Toxicology, 80, 315–318.

    Article  Google Scholar 

  31. Woodrow, J. E., Seiber, J. N., & Baker, L. W. (1997). Correlation techniques for estimating pesticide volatilization flux and downwind concentrations. Environmental Science & Technology, 31, 523–529.

    CAS  Article  Google Scholar 

  32. Woodrow, J. E., Seiber, J. N., & Dary, C. (2001). Predicting pesticide emissions and downwind concentrations using correlations with estimated vapor pressures. Journal of Agricultural and Food Chemistry, 49, 3841–3847.

    CAS  Article  Google Scholar 

  33. Gill, H. K., & Garg, H. (2014). Pesticide: environmental impacts and management strategies. Pesticides-toxic aspects, 8, 187.

    Google Scholar 

Download references


This article was supported by Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia, research group no. RGP-1440-050.

Author information



Corresponding author

Correspondence to Mohamed H. EL-Saeid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

EL-Saeid, M.H., Alghamdi, A.G. Identification of Pesticide Residues and Prediction of Their Fate in Agricultural Soil. Water Air Soil Pollut 231, 284 (2020).

Download citation


  • Pesticides
  • Residues
  • QuEChERS
  • GC-MS/MS
  • Vapor pressure
  • Partition coefficient
  • Fate
  • Water coefficient