Removal Capacities and Environmental Constrains of Denitrification and Anammox Processes in Eutrophic Riverine Sediments

Abstract

Excessive nitrogen (N) loading has had severe consequences in coastal zones around the world. Denitrification and anammox are major microbial pathways for removing N in aquatic environments before it is exported to the coast. To assess two processes in eutrophic riverine systems, the denitrification and anammox and their bacterial participants were investigated in sediments of the Xiaoqing (XQ) River and Jiaolai (JL) River in Northeast China. By combining the evidence from N15 isotope tracing experiment and functional gene-based analysis, it was found that denitrification and anammox are ubiquitous along the investigated riverine sediments. The denitrification varied from 39.38 to 1433.01 nmol N2 m−2 h−1. Moreover, the anammox rates were in the range of 15.91 to 1209.97 nmol N2 m−2 h−1. Quantitative PCR results revealed that the nirK and nirS genes were in the order of 104–106 copies g−1 and 103–105 copies g−1, respectively, in both river sediments, while the hzsA was in the order of 106–105 copies g−1 in XQ at approximately two orders of magnitude compared with JL. The phylogenetic analysis of functional genes revealed the high diversity of the denitrifier and low diversity of anammox bacteria. Variance partitioning analyses verified that the grain particle characteristics were the major factor group determined the N removal efficiency. The denitrification and anammox processes were estimated to have removed 16.1% of the inorganic nitrogen inputs before being exported to Laizhou Bay, which highlights that a more extensive understanding of the regularity of the N removal processes is important in the technical remediation of eutrophication problems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abell, G. C. J., Revill, A. T., Smith, C., Bissett, A. P., Volkman, J. K., & Robert, S. S. (2010). Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME Journal, 4, 286–300.

    CAS  Google Scholar 

  2. Alldred, M., & Baines, S. B. (2016). Effects of wetland plants on denitrification rates: a meta-analysis. Ecological Applications, 26(3), 676–685.

    Google Scholar 

  3. Breemen, N. V., Boyer, E. W., Goodale, C. L., Jaworski, N. A., Paustian, K., Seitzinger, S. P., Lajtha, K., Mayer, B., Dam, D. V., & Howarth, R. W. (2002). Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry, 57-58(1), 267–293.

    Google Scholar 

  4. Brin, L. D., Giblin, A. E., & Rich, J. J. (2014). Environmental controls of anammox and denitrification in Southern New England estuarine and shelf sediments. Limnology and Oceanography, 59(3), 851–860.

    CAS  Google Scholar 

  5. Crowe, S. A., Treusch, A. H., Forth, M., Li, J., Magen, C., Canfield, D. E., Bo, T., & Katsev, S. (2017). Novel anammox bacteria and nitrogen loss from Lake Superior. Scientific Reports, 7(1), 13757.

    Google Scholar 

  6. Dale, O. R., Tobias, C. R., & Song, B. (2009). Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River estuary. Environmental Microbiology, 11(5), 1194–1207.

    CAS  Google Scholar 

  7. Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929.

    CAS  Google Scholar 

  8. Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927–930.

    Google Scholar 

  9. Dong, L. F., Nedwell, D. B., Underwood, G. J. C., Thornton, D. C. O., & Rusman, I. (2002). Nitrous oxide formation in the Colne estuary in England: the central role of nitrite. Applied and Environmental Microbiology, 68(3), 1240–1249.

    CAS  Google Scholar 

  10. Donner, S. D., & Kucharik, C. J. (2008). Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4513–4518.

    CAS  Google Scholar 

  11. Fozia, Zheng, Y., Hou, L., Zhang, Z., Gao, D., Yin, P., Han, P., Dong, H., Liang, X., Yang, Y., & Liu, M. (2020). Community dynamics and activity of nirS-harboring denitrifiers in sediments of the Indus River estuary. Marine Pollution Bulletin, 153, 110971.

    CAS  Google Scholar 

  12. Graham, D. W., Trippett, C., Dodds, W. K., O'Brien, J. M., Banner, E. B. K., Head, I. M., Smith, M. S., Yang, R. K., & Knapp, C. W. (2010). Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams. Environmental Pollution, 158(10), 3225–3229.

    CAS  Google Scholar 

  13. Guentzel, K. S., Hondzo, M., Badgley, B. D., Finlay, J. C., Sadowsky, M. J., & Kozarek, J. L. (2014). Measurement and modeling of denitrification in sand-bed streams under various land uses. Journal of Environmental Quality, 43(3), 1013–1023.

    Google Scholar 

  14. Harhangi, H. R., Le Roy, M., van Alen, T., Hu, B.-L., Groen, J., Kartal, B., Tringe, S. G., Quan, Z.-X., Jetten, M. S., & den Camp, H. J. O. (2012). Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Applied and Environmental Microbiology, 78(3), 752–758.

    CAS  Google Scholar 

  15. Heikkinen, R. K., Luoto, M., Virkkala, R., & Rainio, K. (2004). Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. Journal of Applied Ecology, 41(5), 824–835.

    Google Scholar 

  16. Jha, P. K., & Minagawa, M. (2013). Assessment of denitrification process in lower Ishikari river system, Japan. Chemosphere, 93(9), 1726–1733.

    CAS  Google Scholar 

  17. Jia, Z., Liu, T., Xia, X., & Xia, N. (2016). Effect of particle size and composition of suspended sediment on denitrification in river water. Science of the Total Environment, 541, 934–940.

    CAS  Google Scholar 

  18. Jiao, L., Wu, J., He, X., Wen, X., Li, Y., & Hong, Y. (2018). Significant microbial nitrogen loss from denitrification and anammox in the land-sea interface of low permeable sediments. International Biodeterioration & Biodegradation, 135, 80–89.

    CAS  Google Scholar 

  19. Kim, H., Bae, H.-S., Reddy, K. R., & Ogram, A. (2016). Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Research, 106, 51–61.

    CAS  Google Scholar 

  20. Lansdown, K., McKew, B. A., Whitby, C., Heppell, C. M., Dumbrell, A. J., Binley, A., Olde, L., & Trimmer, M. (2016). Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology. Nature Geoscience, 9, 357.

    CAS  Google Scholar 

  21. Li, J., Nedwell, D. B., Beddow, J., Dumbrell, A. J., McKew, B. A., Thorpe, E. L., & Whitby, C. (2015). amoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not archaea dominate N cycling in the Colne estuary, United Kingdom. Applied and Environmental Microbiology, 81(1), 159–165.

    Google Scholar 

  22. Li, M., Hong, Y., Klotz, M. G., & Gu, J. D. (2010). A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Applied Microbiology and Biotechnology, 86(2), 781–790.

    CAS  Google Scholar 

  23. Lin, J., Chen, N., Wang, F., Huang, Z., Zhang, X., & Liu, L. (2020). Urbanization increased river nitrogen export to western Taiwan Strait despite increased retention by nitrification and denitrification. Ecological Indicators, 109, 105756.

    CAS  Google Scholar 

  24. Lindemann, S., Zarnoch, C. B., Castignetti, D., & Hoellein, T. J. (2016). Effect of eastern oysters (Crassostrea virginica) and seasonality on nitrite reductase gene abundance (nirS, nirK, nrfA) in an urban estuary. Estuaries and Coasts, 39(1), 218–232.

    CAS  Google Scholar 

  25. Lisa, J. A., Song, B., Tobias, C. R., & Hines, D. E. (2015). Genetic and biogeochemical investigation of sedimentary nitrogen cycling communities responding to tidal and seasonal dynamics in Cape Fear River estuary. Estuarine Coastal and Shelf Science, 167, A313–A323.

    CAS  Google Scholar 

  26. Liu, G. D., Wu, W. L., & Zhang, J. (2005). Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China. Agriculture, Ecosystems and Environment, 107, 211–220.

    CAS  Google Scholar 

  27. Liu, G. Q., Wang, S. Y., Zhu, X. J., Liu, S. M., & Zhang, J. (2007). Groundwater and nutrient discharge into Jiaozhou Bay, North China. Water Air and Soil Pollution, 7(6), 593–605.

    CAS  Google Scholar 

  28. Liu, W., Wang, Z., Zhang, Q., Cheng, X., Lu, J., & Liu, G. (2015). Sediment denitrification and nitrous oxide production in Chinese plateau lakes with varying watershed land uses. Biogeochemistry, 123(3), 379–390.

    CAS  Google Scholar 

  29. Liu, W., Yao, L., Jiang, X., Guo, L., Cheng, X., & Liu, G. (2018). Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities. Science of the Total Environment, 616-617, 978–987.

    CAS  Google Scholar 

  30. Loken, L. C., Small, G. E., Finlay, J. C., Sterner, R. W., & Stanley, E. H. (2016). Nitrogen cycling in a freshwater estuary. Biogeochemistry, 127(2–3), 199–216.

    CAS  Google Scholar 

  31. Lu, X., Bade, D. L., Leff, L. G., & Mou, X. (2018). The relative importance of anammox and denitrification to total N2 production in Lake Erie. Journal of Great Lakes Research, 44(3), 428–435.

    CAS  Google Scholar 

  32. Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 105(7), 1141–1157.

    Google Scholar 

  33. Naeher, S., Huguet, A., Roose-Amsaleg, C. L., Laverman, A. M., Fosse, C., Lehmann, M. F., Derenne, S., & Zopfi, J. (2015). Molecular and geochemical constraints on anaerobic ammonium oxidation (anammox) in a riparian zone of the Seine estuary (France). Biogeochemistry, 123(1), 237–250.

    CAS  Google Scholar 

  34. Painting, S. J., Devlin, M. J., Malcolm, S. J., Parker, E. R., Mills, D. K., Mills, C., Tett, P., Wither, A., Burt, J., Jones, R., & Winpenny, K. (2007). Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication. Marine Pollution Bulletin, 55(1), 74–90.

    CAS  Google Scholar 

  35. Petersen, D. G., Blazewicz, S. J., Firestone, M., Herman, D. J., Turetsky, M., & Waldrop, M. (2012). Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environmental Microbiology, 14(4), 993–1008.

    CAS  Google Scholar 

  36. Qu, H. J., & Kroeze, C. (2010). Past and future trends in nutrients export by rivers to the coastal waters of China. Science of the Total Environment, 408(9), 2075–2086.

    CAS  Google Scholar 

  37. Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., & Meyer, R. L. (2003). Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnology and Oceanography: Methods, 1, 63–73.

    Google Scholar 

  38. Ritz, S., Dähnke, K., & Fischer, H. (2018). Open-channel measurement of denitrification in a large lowland river. Aquatic Sciences, 80(1), 11.

    Google Scholar 

  39. Rocca, J. D., Hall, E. K., Lennon, J. T., Evans, S. E., Waldrop, M. P., Cotner, J. B., Nemergut, D. R., Graham, E. B., & Wallenstein, M. D. (2015). Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME Journal, 9(8), 1693.

    Google Scholar 

  40. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., & Robinson, C. J. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.

    CAS  Google Scholar 

  41. Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., & Drecht, G. V. (2006). Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications, 16(6), 2064–2090.

    CAS  Google Scholar 

  42. Šimek, M., & Cooper, J. E. (2010). The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 53(3), 345–354.

    Google Scholar 

  43. Small, G. E., Finlay, J. C., Mckay, R. M. L., Rozmarynowycz, M. J., Brovold, S., Bullerjahn, G. S., Spokas, K., & Sterner, R. W. (2016). Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes. Biogeochemistry, 128(3), 353–368.

    CAS  Google Scholar 

  44. Speir, S. L., Taylor, J. M., & Scott, J. T. (2017). Seasonal differences in relationships between nitrate concentration and denitrification rates in ditch sediments vegetated with rice cutgrass. Journal of Environmental Quality, 46(6), 1500–1509.

    CAS  Google Scholar 

  45. Strokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S., Wang, H., Yang, S., & Zhang, Y. (2014). Increasing eutrophication in the coastal seas of China from 1970 to 2050. Marine Pollution Bulletin, 85(1), 123–140.

    CAS  Google Scholar 

  46. Sun, W., Xu, M.-Y., Wu, W.-M., Guo, J., Xia, C.-Y., Sun, G.-P., & Wang, A.-J. (2014). Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. Journal of Applied Microbiology, 116(2), 464–476.

    CAS  Google Scholar 

  47. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    CAS  Google Scholar 

  48. Tang, Y., Li, M., Xu, D., Huang, J., & Sun, J. (2018). Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment. Environmental Science and Pollution Research, 25(6), 5980–5993.

    CAS  Google Scholar 

  49. Tomasek, A., Kozarek, J. L., Hondzo, M., Lurndahl, N., Sadowsky, M. J., Wang, P., & Staley, C. (2017). Environmental drivers of denitrification rates and denitrifying gene abundances in channels and riparian areas. Water Resources Research, 53(8), 6523–6538.

    Google Scholar 

  50. van Wijnen, J., Ivens, W. P. M. F., Kroeze, C., & Löhr, A. J. (2015). Coastal eutrophication in Europe caused by production of energy crops. Science of the Total Environment, 511, 101–111.

    Google Scholar 

  51. Wang, S., Zhu, G., Peng, Y., Jetten, M. S. M., & Yin, C. (2012). Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environmental Science & Technology, 46(16), 8834–8842.

    CAS  Google Scholar 

  52. Xia, X., Liu, T., Yang, Z., Michalski, G., Liu, S., Jia, Z., & Zhang, S. (2017). Enhanced nitrogen loss from rivers through coupled nitrification-denitrification caused by suspended sediment. Science of the Total Environment, 579, 47–59.

    CAS  Google Scholar 

  53. Xia, X., Li, Z., Zhang, S., Zhang, L., Zhang, L., & Wang, G. (2019). Occurrence of anammox on suspended sediment (SPS) in oxic river water: effect of the SPS particle size. Chemosphere, 235, 40–48.

    CAS  Google Scholar 

  54. Yao, L., Chen, C., Liu, G., & Liu, W. (2018). Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in a eutrophic lake. Science of the Total Environment, 616-617, 899.

    CAS  Google Scholar 

  55. Zeng, J., Chen, M., Zheng, M., Qiu, Y., He, W., He, Y., & Liu, X. (2018). Effects of particles on potential denitrification in the coastal waters of the Beibu Gulf in China. Science of the Total Environment, 624, 1274–1286.

    CAS  Google Scholar 

  56. Zhang, J., & Gao, X. (2016). Nutrient distribution and structure affect the acidification of eutrophic ocean margins: a case study in southwestern coast of the Laizhou Bay, China. Marine Pollution Bulletin, 111(1), 295–304.

    CAS  Google Scholar 

  57. Zhang, R., Zhang, G., Zheng, Q., Tang, J., Chen, Y., Xu, W., Zou, Y., & Chen, X. (2012). Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotoxicology and Environmental Safety, 80, 208–215.

    CAS  Google Scholar 

  58. Zhang, Y., Ruan, X.-H., Op den Camp, H. J. M., Smits, T. J. M., Jetten, M. S. M., & Schmid, M. C. (2007). Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environmental Microbiology, 9(9), 2375–2382.

    CAS  Google Scholar 

  59. Zhang, Z., Zhu, M., Wang, Z., & Wang, J. (2006). Monitoring and managing pollution load in Bohai Sea, PR China. Ocean & Coastal Management, 49(9), 706–716.

    Google Scholar 

  60. Zhang, X., Zhang, Q., Yang, A., Hou, L., Zheng, Y., Zhai, W., & Gong, J. (2018). Incorporation of microbial functional traits in biogeochemistry models provides better estimations of benthic denitrification and anammox rates in coastal oceans. Journal of Geophysical Research: Biogeosciences, 123, 3331–3352.

    CAS  Google Scholar 

  61. Zheng, Y., Jiang, X., Hou, L., Min, L., & Rong, W. (2016). Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient: shift in anammox along salinity gradient. Journal of Geophysical Research: Biogeosciences, 121(6), 1632–1645.

    Google Scholar 

  62. Zhu, G., Wang, S., Wang, W., Wang, Y., Zhou, L., Jiang, B., Op den Camp, H. J. M., Risgaard-Petersen, N., Schwark, L., Peng, Y., Hefting, M. M., Jetten, M. S. M., & Yin, C. (2013). Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nature Geoscience, 6, 103.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jia Yue, Zhengyi Liu, and Zhonghua Wang for their help with field sampling. We also thank the Center for Analysis and Test of the Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, for measuring the environmental parameters.

Funding

This study was financially supported by the National Natural Science Foundation of China (No. 41106100) and the Science and Technology program of Yantai (No. 2016YTZD0007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Song Qin.

Ethics declarations

Conflict of Interest

The authors declare that there they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 703 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, S. & Qin, S. Removal Capacities and Environmental Constrains of Denitrification and Anammox Processes in Eutrophic Riverine Sediments. Water Air Soil Pollut 231, 274 (2020). https://doi.org/10.1007/s11270-020-04593-z

Download citation

Keywords

  • Denitrification
  • Anammox
  • Functional community
  • Geochemical constraint
  • Eutrophic riverine sediments